
- •В. Г. Потемкин
- •Предисловие
- •Введение
- •Используемые обозначения
- •Часть 1. Ппп Neural Network Toolbox
- •1. Система matlab 6
- •1.1. Операционная среда matlab 6
- •Командное окно
- •Окно предыстории
- •Окно запуска
- •Окно текущего каталога
- •Окно рабочей области
- •Справочная подсистема
- •1.3. Демонстрационные примеры ппп nnt
- •2. Модель нейрона и архитектура сети
- •2.1. Модель нейрона
- •2.1.1. Простой нейрон
- •2.1.2. Функция активации
- •2.1.3. Нейрон с векторным входом
- •2.2. Архитектура нейронных сетей
- •2.2.1. Однослойные сети
- •2.2.2. Многослойные сети
- •2.2.3. Сети с прямой передачей сигнала
- •2.3. Создание, инициализация и моделирование сети Формирование архитектуры сети
- •Инициализация сети
- •Моделирование сети
- •3. Обучение нейронных сетей
- •3.1. Процедуры адаптации и обучения
- •Явление переобучения
- •Свойство обобщения
- •3.1.1. Способы адаптации и обучения
- •Адаптация нейронных сетей
- •Xlabel(''), ylabel('Выходы a(I)'),grid
- •Xlabel(''), ylabel('Веса входов w(I)'),grid
- •Xlabel(' Циклы'), ylabel('Ошибка'),grid
- •Xlabel(''), ylabel('Выходы a(I)'),grid
- •Xlabel(''), ylabel('Веса входов w(I)'),grid
- •Xlabel('Циклы'), ylabel('Ошибка'),grid
- •Xlabel(''), ylabel('Выходы a(I)'),grid
- •Xlabel(''), ylabel('Веса входов w(I)'),grid
- •Xlabel('Циклы'), ylabel('Ошибка'),grid
- •Обучение нейронных сетей
- •3.2. Методы обучения
- •3.2.1. Обучение однослойной сети
- •3.2.2. Обучение многослойной сети
- •Метод обратного распространения ошибки
- •Характеристика методов обучения
- •3.3. Алгоритмы обучения
- •3.3.1. Градиентные алгоритмы обучения Алгоритм gd
- •Алгоритм gdm
- •Алгоритм gda
- •Алгоритм Rprop
- •3.3.2. Алгоритмы метода сопряженных градиентов
- •Алгоритм cgf
- •Алгоритм cgp
- •Алгоритм cgb
- •Алгоритм scg
- •3.3.3. Квазиньютоновы алгоритмы Алгоритм bfgs
- •Алгоритм oss
- •Алгоритм lm
- •3.3.4. Алгоритмы одномерного поиска
- •Алгоритм gol
- •Алгоритм bre
- •Алгоритм hyb
- •Алгоритм cha
- •Алгоритм bac
- •3.3.5. Расширение возможностей процедур обучения
- •Переобучение
- •Метод регуляризации
- •Формирование представительной выборки
- •Предварительная обработка и восстановление данных
- •Пример процедуры обучения
- •4. Персептроны
- •4.1. Архитектура персептрона
- •4.2. Модель персептрона
- •Моделирование персептрона
- •Инициализация параметров
- •4.3. Процедуры настройки параметров
- •Правила настройки
- •Процедура адаптации
- •5. Линейные сети
- •5.1. Архитектура линейной сети
- •5.2. Создание модели линейной сети
- •5.3. Обучение линейной сети
- •Процедура настройки
- •Процедура обучения
- •5.4. Применение линейных сетей Задача классификации векторов
- •Фильтрация сигнала
- •Предсказание сигнала
- •Подавление шумов
- •Многомерные цифровые фильтры
- •6. Радиальные базисные сети
- •Модель нейрона и архитектура сети
- •Создание сети
- •Радиальная базисная сеть с нулевой ошибкой
- •Итерационная процедура формирования сети
- •Примеры радиальных базисных сетей
- •6.1. Сети grnn
- •Архитектура сети
- •Синтез сети
- •6.2. Сети pnn
- •Архитектура сети
- •Синтез сети
- •7. Сети кластеризации и классификации данных
- •7.1. Самоорганизующиеся нейронные сети
- •7.1.1. Слой Кохонена
- •Архитектура сети
- •Создание сети
- •Правило обучения слоя Кохонена
- •Правило настройки смещений
- •Обучение сети
- •7.1.2. Карта Кохонена
- •Топология карты
- •Функции для расчета расстояний
- •Архитектура сети
- •Создание сети
- •Обучение сети
- •Одномерная карта Кохонена
- •Двумерная карта Кохонена
- •Архитектура сети
- •Создание сети
- •Обучение сети Правила настройки параметров
- •Процедура обучения
- •8. Рекуррентные сети
- •8.1. Сети Элмана
- •Архитектура
- •Создание сети
- •Обучение сети
- •Проверка сети
- •8.2. Сети Хопфилда
- •Архитектура сети
- •Синтез сети
- •Синтез сети
- •Проверка сети
- •9.1.2. Слежение за нестационарным сигналом
- •Инициализация сети
- •Проверка сети
- •9.1.3. Моделирование стационарного фильтра
- •Постановка задачи
- •Синтез сети
- •Проверка сети
- •9.1.4. Моделирование нестационарного фильтра
- •Постановка задачи
- •Инициализация сети
- •Проверка сети
- •9.2. Распознавание образов
- •Постановка задачи
- •Нейронная сеть
- •Архитектура сети
- •Инициализация сети
- •Обучение
- •Обучение в отсутствие шума
- •Обучение в присутствии шума
- •Повторное обучение в отсутствие шума
- •Эффективность функционирования системы
- •9.3. Нейронные сети и системы управления
- •9.3.1. Регулятор с предсказанием
- •9.3.2. Регулятор narma-l2
- •9.3.3. Регулятор на основе эталонной модели
- •Функции инициализации, адаптации и обучения
- •10.2. Описание элементов сети
- •Описание входов
- •Описание слоев
- •Описание выходов
- •Описание целей
- •Описание смещений
- •Описание весов входа
- •Описание весов слоя
- •Матрицы весов и векторы смещений
- •Информационные поля
- •11. Формирование моделей нейронных сетей
- •11.1. Модели сетей
- •11.1.1. Однослойные сети Персептрон
- •Линейные сети
- •11.1.2. Многослойные сети
- •Радиальные базисные сети
- •Самоорганизующиеся сети
- •Сети – классификаторы входных векторов
- •Рекуррентные сети
- •11.2. Функции активации
- •Персептрон
- •Линейные сети
- •Радиальные базисные сети
- •Самоорганизующиеся сети
- •Рекуррентные сети
- •11.3. Синаптические функции
- •Функции взвешивания и расстояний
- •Функции накопления
- •11.4. Функции инициализации
- •11.5. Функции адаптации и обучения Функции адаптации
- •Функции обучения
- •Градиентные алгоритмы обучения
- •Алгоритмы метода сопряженных градиентов
- •Квазиньютоновы алгоритмы обучения
- •11.5.1. Функции оценки качества обучения
- •11.6. Функции настройки параметров
- •11.6.1. Функции одномерного поиска
- •11.7. Масштабирование и восстановление данных
- •11.8. Вспомогательные функции
- •Утилиты вычислений
- •Операции с массивами данных
- •Графические утилиты
- •Информация о сети и ее топологии
- •11.9. Моделирование нейронных сетей и система Simulink Функции моделирования сети
- •11.9.1. Применение системы Simulink
- •Библиотеки блоков для моделирования нейронных сетей
- •Построение моделей нейронных сетей
- •Индексный указатель Команды, функции и операторы ппп Neural Network Toolbox
- •Предметный указатель
- •Литература Книги на английском языке:
- •Книги на русском языке:
- •Оглавление
- •1. Система matlab 6 9
- •2. Модель нейрона и архитектура сети 33
- •3. Обучение нейронных сетей 47
- •10. Вычислительная модель нейронной сети 228
- •11. Формирование моделей нейронных сетей 245
П А К Е Т Ы П Р И К Л А Д Н Ы Х П Р О Г Р А М М
В. С. МЕДВЕДЕВ,
В. Г. Потемкин
НЕЙРОННЫЕ СЕТИ MATLAB 6
Под общей редакцией
кандидата технических наук В. Г. Потемкина
УДК 681. Пакеты прикладных программ
Выпускается с 1999 года
Медведев В. С., Потемкин В. Г.
Нейронные сети. MATLAB 6./Под общ. ред. В. Г. Потемкина. – М.: ДИАЛОГ-МИФИ, 2001. – 630 с. – (Пакеты прикладных программ; Кн. 4).
ISBN 5-86404-144-0 (Кн. 4)
В книге содержится описание пакета прикладных программ Neural Network Toolbox (ППП NNT) версии 4 (выпуски 11 и 12), функционирующего под управлением ядра системы MATLAB версий 5.3 и 6.
Книга состоит из двух частей. Первая часть содержит теорию и описание различных типов нейронных сетей; вторая – включает справочный материал, связанный с описанием М-функций пакета.
Рассмотрено 15 типов нейронных сетей, для каждой из которых описана архитектура, методы адаптации, обучения и настройки параметров. Показано применение нейронных сетей для решения прикладных задач фильтрации и предсказания сигналов, подавления шумов, распознавания образов, построения систем управления.
Приведено полное описание вычислительной модели нейронной сети в виде массива записей. Архитектура нейронной сети представлена ее S-моделью, которая воспроизводится с помощью системы SIMULINK. Пакет программ дополнен библиотекой Neural Network Toolbox Block Library, содержащей блоки, необходимые для формирования S-модели нейронной сети.
Большое количество вспомогательных графических функций помогает пользователю создавать наглядные проекты нейронных сетей для различных приложений.
Книга предназначена для инженеров, научных работников, аспирантов и студентов, занимающихся созданием технических систем на основе нейронных сетей и использующих в своей практике современные вычислительные инструменты и средства прикладного программирования.
Учебно-справочное издание
Медведев Владимир Степанович, Потемкин Валерий Георгиевич
Нейронные сети. MATLAB 6.
Под общ. ред. В. Г. Потемкина.
ISBN 5-86404-144-0 (Кн. 4) © Медведев В. С., Потемкин В. Г., 2001
ISBN 5-86404-135-1 © Оригинал-макет, оформление обложки,
ЗАО «Диалог-МИФИ», 2001
Предисловие
Предлагаемая вниманию читателя книга входит в серию "Пакеты прикладных программ". Эта серия книг [54–56] посвящена описанию прикладного программного обеспечения фирмы MathWorks, функционирующего под управлением ядра системы MATLAB.
Нейронные сети представляют новое направление в практике создания технических систем. Возможности нейронных сетей выполнять операции сравнения по образцу и классификации объектов, недоступные для традиционной математики, позволяют создавать искусственные системы для решения задач распознавания образов, диагностики заболеваний, автоматического анализа документов и многих других нетрадиционных приложений.
Теория нейронных сетей развивается в течение последнего полувека, но практическое ее применение стало возможно только в последние 10–15 лет, когда была создана необходимая элементная база для реализации нейронных сетей. Обращаем внимание читателей на ряд обзорных работ по нейронным сетям на русском языке [57, 58].
Тем не менее данная книга занимает особое место, поскольку в ней описан реальный инструмент для расчета и проектирования нейронных сетей. Книга состоит из двух частей. Часть 1 содержит теорию и описание конкретных нейронных сетей. В нее также включен раздел по системе MATLAB 6 и GUI-интерфейсу для работы с ППП NNT. Часть 2 включает справочный материал по описанию М-функций пакета.
Значительное внимание уделено проектированию контроллеров для систем управления на основе нейронных сетей. Рассмотрено несколько весьма сложных систем управления, для которых процедура проектирования контроллера занимает значительное время. В первую очередь это модель химического реактора с непрерывным перемешиванием, где используется модель управляемого процесса для предсказания поведения реактора в процессе его функционирования. Другая модель – управление движущимся объектом в магнитном поле. Здесь в качестве модели управляемого процесса используется нелинейная авторегрессионная модель со скользящим средним, которая входит в состав регулятора и реализуется в виде нейронной сети. Еще один пример связан с управлением роботом, здесь нейронные сети используются для построения как модели управляемого объекта, так и самого регулятора. Работа с этими системами возможна только при наличии ядра системы MATLAB версии 6 и системы Simulink версий 4 (R12) или 5.
Читателю следует выбрать стиль работы с книгой. Начинающему знакомиться с теорией и практикой нейронных сетей рекомендуется в первую очередь просмотр демонстрационных примеров и формирование сетей с помощью GUI-интерфейса NNTool. Опытному пользователю, создающему собственные архитектуры нейронных сетей, следует применять режим работы из командного окна, который позволяет воспользоваться всеми возможностями ППП NNT. Следует также обратить внимание на интерфейс ППП NNT с системой SIMULINK, что позволяет наглядно отображать архитектуру сети и выполнять моделирование как статических, так и динамических нейронных сетей.
При чтении книги читатель найдет большое количество примеров формирования и расчета нейронных сетей. Все операторы в этих примерах проверены и в точности соответствуют приводимым результатам. Таким образом, читатель, предполагающий активно использовать компьютер при изучении материала этой книги, сможет воспроизводить примеры в среде системы MATLAB с установленным ППП NNT. Кроме того, мы предполагаем к моменту выхода книги разместить на сайте www.mathworks.ru М-файлы этих сценариев, которые будут доступны для копирования. Это позволит избавиться от возможных непреднамеренных ошибок пользователя.
Авторы выражают благодарность О. А. Мишулиной за полезные советы при подготовке рукописи книги, способствовавшие ее улучшению.
В. С. Медведев, В. Г. Потемкин,
сентябрь 2001 г.