
- •Экзаменационныевопросы
- •Биохимия-биохимияполостирта
- •Функциибелков
- •2.Сложные белки. Классификация, строение, примеры. Строение ифункции миоглобина.
- •Серповидно-клеточнаяанемия
- •Нарушениесинтезагемоглобина
- •4.Общая характеристика ферментов. Специфичность ферментов. Виды специфичности, примеры. Строение ферментов. Кофакторы и коферменты. Классификация и номенклатура ферментов.
- •Существуютшестьклассовферментов
- •Ферментыизбирательнывсвоемдействии
- •Ферментыизбирательнывсвоемдействии
- •Лекарстваобычноингибируютферменты
- •Ингибированиеферментов
- •Особенности строения и функционирования аллостерическихферментов:
- •Регуляция каталитической активности ферментов белок- белковыми взаимодействиями.
- •Активация ферментов в результате присоединения регуляторныхбелков.
- •Регуляция каталитической активности ферментов путёмфосфорилирования/дефосфорилирования
- •Естьпатологии,прикоторыхферменты неработают
- •Энзимотерапия-
- •Биологическоеокисление
- •1. Катаболизм и анаболизм. Общая схема обмена веществ и энергии в организме человека. Специфические и общие пути катаболизма.
- •РольАтф
- •2. Окислительное декарбоксилирование пирувата. Строение пируватдегидрогеназного комплекса. Стадии окислительного декарбоксилирования пирувата. Регуляция пируватдегидрогеназногокомплекса.
- •Окислениеацетатадаетмногоэнергии
- •Циклтрикарбоновыхкислот
- •Энергетическая
- •Окислительноефосфорилирование
- •Дыхательнаяцепьвключаетмножествобелков-переносчиков
- •Комплекс.Надн-КоQ-оксидоредуктаза
- •Комплекс.Фад-зависимыедегидрогеназы
- •Комплекс.КоQ-цитохромc-оксидоредуктаза
- •Комплекс.Цитохромс-кислород-оксидоредуктаза
- •Комплекс
- •Ингибиторыокислительногофосфорилирования
- •Структурно-функциональнаяхарактеристикамитохондрий
- •Существуетмногоактивныхформкислорода
- •Свободныерадикалымогутобразоватьсяспонтанно
- •Активныерадикалымогутобразоватьсяспециально
- •9.Антиоксидантная система организма.Антиоксиданты неферментативной природы. Ферментные системы антиоксидантной защиты. Агрессивностьсвободныхрадикаловнадоконтролировать
- •10.Физиологическоезначениесвободно-радикального окисления. Фагоцитоз и воспаление.
- •Свободныерадикалымогутприноситьпользу
- •Обменуглеводов
- •2.Структураифункциипредставителейуглеводов:моносахаридов, дисахаридов, гомополисахаридов.
- •Моносахариды-этоструктурнаяединицалюбыхуглеводов
- •Дисахаридычастоприсутствуютвпище
- •Уполисахаридовструктурнаяирезервнаяфункция
- •Функции
- •Углеводылегкоусваиваются
- •Перевариваниеуглеводоввжелудочно-кишечномтракте
- •Непереносимостьлактозыисахарозы
- •Мальабсорбцияфруктозы
- •Для переноса моносахаридов через мембраны требуются белки-транспортеры
- •Транспорт моносахаровчерезмембраны
- •6. Пути превращения глюкозы в клетке. Источники глюкозы в клетке. Фосфорилирование глюкозы, ключевая роль глюкозо-6-фосфата. Фруктозаигалактозадолжныпревратитьсявглюкозу
- •Превращениемоносахаров
- •Превращениегалактозы
- •Превращениефруктозы
- •Гексокиназа-первыйферментметаболизмаглюкозы
- •Гликоген-этолегкоиспользуемыйрезервэнергии
- •Синтези распадгликогенареципрокны
- •10.Генетические нарушения синтеза (агликогеноз) и распада гликогена (печеночные, мышечные и смешанные гликогенозы). Агликогенозы
- •Гликогенозы
- •Гликолиз
- •Анаэробныйгликолиз-самодостаточныйпроцесс
- •14.Судьба продуктов гликолиза в аэробных условиях.Глицеролфосфатная и малатаспартатнаячелночные системы. Энергетический выход аэробного окисления глюкозы.
- •НадНгликолизамогутдоставлятьсявмитохондрии
- •Челночныесистемы
- •17.Глюкозо-лактатный цикл (цикл кори), его значение при физической работе. Источники молочной кислоты в организме. Глюкозо-аланиновый цикл, его значение при физической работе и голодании.
- •Вразныхклеткахпентозофосфатныйпутьидетпо-разному
- •Нарушенияпентозофосфатногопутиестьумногихлюдей
- •Обменлипидов
- •Функции липидовтесносвязанысихстроением
- •Перевариваниелипидовможетлегконарушиться
- •Причинынарушенийперевариваниялипидов
- •Удетейсвоипричуды Особенностиперевариванияжираудетей
- •Количествобелкавпищенеобходимопросчитывать
- •Чтозначитполноценныйбелок?
- •Перевариваниебелковначинаетсявжелудке
- •Втонкомкишечникебелкидолжныполностьюрасщепиться
- •Удетейсвоипричуды Особенностиперевариваниябелковудетей
- •ПроблемыЖкТвлияютнавесьорганизм
- •Появлениеаммиакавклеткахнепрерывно
- •Сначалааммиактребуетсяобезвредить
- •Связанныйаммиакпереноситсявпеченьипочки
- •Дляудаленияаммиакаестьдваспособа
- •Аммиактоксичендляорганизма
- •Наследственныеиприобретенныеформыгипераммониемий
- •Строениепиримидиновыхоснованийинуклеозидов
- •Строениенуклеотидов
- •Синтезпиримидиновыхнуклеотидовлинейный
- •Синтездезоксирибонуклеотидовпроисходитвтриреакции
- •Реакциядефосфорилирования
- •Реакциявосстановления
- •Реакцияфосфорилирования
- •Пуриновыеоснованиясодержатдвойнойцикл Строениепуриновыхоснованийинуклеозидов
- •Строениенуклеотидов
- •Синтезпуриновыхнуклеотидовдовольносложен
- •Синтез5'-фосфорибозиламина
- •Синтезинозинмонофосфата
- •Синтезаденозинмонофосфатаигуанозинмонофосфата
- •ОбразованиенуклеозидтрифосфатовАтФиГтф.
- •Пуриныраспадаютсясобразованиеммочевойкислоты
- •Пуриновыеоснованиядолжныиспользоватьсяповторно
- •Накоплениемочевойкислотыбьетпосуставамипочкам
- •Нарушенияобменапуринов
- •Связьобменасерина,глицина,метионинаицистеина
- •Нарушениеобменаметионинаицистеина Гомоцистеинемия
- •Обменфенилаланинаитирозина
- •Фенилкетонурия-самоеяркоенарушениеобменааминокислот
- •Гормоны
- •Гормоныгипофизарно-надпочечниковойсистемы
- •Адренокортикотропныйгормон
- •Глюкокортикоиды
- •Гормонытиреоиднойфункции Тиреотропныйгормон
- •Йодтиронины
- •6. Глюкагон: биологическое значение, регуляция синтеза и секреции, механизм действия,органы-мишени, влияние на обмен веществ – регулируемые ферменты и процессы.
- •Сахарныйдиабет-биохимическоезаболевание
- •Причинысахарногодиабета
- •Диагностикасахарногодиабета
- •Последствияиосложнениясахарногодиабета
- •Биохимияпечениикрови
- •Причинынарушенийперевариваниялипидов
- •Гемнеобходимдлямногихферментов
- •Угемоглобинаестьмолекулярныеболезни Серповидно-клеточнаяанемия
- •Нарушениесинтезагемоглобина
- •Распадгема-многостадийныйпроцесс
- •Существуюттритипанарушенийобменабилирубина
- •Желтухичастовстречаютсяуноворожденных
- •Встречаютсянаследственныепеченочныежелтухи
- •Химические механизмы регуляции кислотно- основного состояния. Буферные системыкрови – фосфатная, белковая, бикарбонатная, гемоглобиновая.Физиологическиесистемы
- •26.Клеточная модель свертывания крови, основные процессы, происходящие на каждой стадии. Стадии: инициация, амплификация, распространение (образование фибрина).
- •Биохимияполостирта
- •Угликопротеиновразнообразныефункции
- •Сывороткакрови
- •Паратиреоидныйгормон
- •ВитаминD(кальциферол,антирахитический)
- •Кальцитонин
- •Амелогенез
- •XII и XIV типов. Состав и функции пульпы. Коллагеновые и неколлагеновые (остеопонтин, остеонектин, интегрины, амелогенины, щелочная фосфатаза и другие) белки пульпы.
- •Белкидентина
- •Структурадентина
- •Пульпазуба
- •Методикавыявлениязубныхотложений
- •4.2.Составдесневойжидкости
4.Общая характеристика ферментов. Специфичность ферментов. Виды специфичности, примеры. Строение ферментов. Кофакторы и коферменты. Классификация и номенклатура ферментов.
Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Подобно белкам они делятся на простые и сложные. Простые ферменты состоят только из аминокислот – например, пепсин, трипсин, лизоцим. Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот – апофермент, и небелковую часть – кофактор. Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД), аминотрансферазы (содержат пиридоксальфосфат), пероксидаза (содержит гем). У сложных ферментов в
активном центре обязательно расположены функциональные группы кофактора. Кофактор участвует в связывании субстрата или в его превращении. Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут.
Специфичность(избирательность) действия ферментов выражается в их способностикатализироватьстрогоопределеннуюреакцию,действоватьна
определенный субстрат или даже на определенную связь в этом субстрате без образования в итоге побочных продуктов.
Существование определенных ферментов для каждого типа химических реакций, происходящих в клетке, – основной закон биологии. Специфичность ферментов обусловлена наличием в них молекулы белка.
Различают несколько видов специфичности – абсолютную, относительную истереохимическую.
- Абсолютная специфичность проявляется в том, что фермент действует только на один субстрат, даже на определенную связь в этом субстрате.
Уреаза обладает абсолютной специфичностью к мочевине. Этот фермент катализирует гидролиз мочевины на аммиак и диоксид углерода:
Абсолютной специфичностью обладает каталаза, расщепляющая пероксид водорода на воду и кислород:
H2O2®H2O+1/2O2
Относительнаягрупповаяспецифичностьферментапроявляется втом, чтоон может действовать не на один, а на несколько субстратов, относящихся к одному или несколькимклассаморганическихсоединений.Так,фермент пируватдекарбоксилаза катализирует декарбоксилирование пировиноградной кислоты с образованием уксусного альдегида и диоксида углерода. Но этот жефермент декарбоксилирует и другие a-кетокислоты с более длинной углеродной цепочкой, однако скорость реакции с удлинением цепи заметно падает.
Стереохимической специфичностью. Ферменты действуя только на определенные стереоизомерные формы субстрата.
Специфичность действия ферментов приводит к тому, что превращение веществ в организме происходит строго упорядоченно, определяя путь, по которому идет превращение веществ. Благодаря специфичности фермент направляет реакцию по одному и тому же пути.
а)абсолютная: одинферментреагируеттолькосоднимвидомсубстрата 1(обозначается-S) в реакции только одного типа. Это самый распространенный тип специфичности, поэтому он не нуждается в примерах; б) относительная: 1 фермент – несколько субстратов – 1 реакция (пример: пищеварительные ферменты); в) стереоспецифичность: фермент работает только с одним из изомеров субстрата (пример: малатдегидрогеназа).
Строениесложныхферментов
Замечу, что энзимы (как и все белки) делят на простые и сложные. Простые – их молекула построенатолькоизаминокислот.Сложные–вихсоставвходиттакженебольшая небелковая часть. Рассмотрим подробнее строение сложных ферментов. Белковая часть их молекулы(бо льшаяпо размеру)– апофермент;небелковая–кофактор. Кофакторы делятна: а)кофермент–связансапоферментомлегко,нековалентноипоэтомуможетнавремя
отходить от белковой части; б) простетическая группа – связана с апоферментом ковалентно,жестко