Учебник (Афанасьев) - гистология, эмбриология
.pdfпримерно к 30 годам. В дальнейшем в стенках артерий происходит разрастание соединительной ткани, что ведет к их уплотнению. В артериях эластического типа этот процесс выражен сильнее, чем в остальных артериях. После 60-70 лет во внутренней оболочке всех артерий обнаруживаются очаговые утолщения коллагеновых волокон, в результате чего в крупных артериях внутренняя оболочка по толщине приближается к средней. В мелких и средних артериях внутренняя оболочка разрастается слабее. Внутренняя эластическая мембрана с возрастом постепенно истончается и расщепляется. Мышечные клетки средней оболочки атрофируются. Эластические волокна подвергаются зернистому распаду и фрагментации, в то время как коллагеновые волокна разрастаются. Одновременно с этим во внутренней и средней оболочках у пожилых людей появляются известковые и липидные отложения, которые прогрессируют с возрастом. В наружной оболочке у людей старше 60-70 лет появляются продольно лежащие пучки гладких мышечных клеток.
Возрастные изменения в венах сходны с таковыми в артериях. Однако перестройка стенки вены человека начинается еще на первом году жизни. Так, к моменту рождения человека в средней оболочке стенок бедренной и подкожных вен нижних конечностей имеются лишь пучки циркулярно ориентированных мышечных клеток. Только к моменту вставания на ноги (к концу первого года) и повышения дистального гидростатического давления развиваются продольные мышечные пучки. Просвет вены по отношению к просвету артерии у взрослых (2:1) больше, чем у детей (1:1). Расширение просвета вен обусловлено меньшей эластичностью стенки вен, возрастанием у взрослых кровяного давления.
Сосуды сосудов до возраста 50-60 лет, как правило, бывают умеренно спазмированными, после 65-70 лет просвет их расширяется.
Лимфатические сосуды многих органов у людей старческого возраста характеризуются многочисленными мелкими варикозными вздутиями и выпячиваниями. Во внутренней оболочке стенок крупных лимфатических стволов и грудного протока у людей старше 35 лет увеличивается количество коллагеновых волокон. Этот процесс значительно прогрессирует к 60-70 годам. Одновременно количество мышечных клеток и эластических волокон уменьшается.
Регенерация. Мелкие кровеносные и лимфатические сосуды обладают способностью к регенерации. Восстановление дефектов сосудистой стенки после ее повреждения начинается с регенерации и роста ее эндотелия. Уже к концу первых - началу вторых суток на месте нанесенного повреждения наблюдается многочисленное деление эндотелиальных клеток. Мышечные клетки поврежденного сосуда, как правило, восстанавливаются более медленно и неполно по сравнению с другими тканевыми элементами сосуда. Восстановление их происходит частично путем деления миоцитов, а также в результате дифференцировки перицитов. Эластические элементы развиваются слабо. В случае полного разрыва среднего и крупного сосудов регенерации его стенки без оперативного вмешательства, как правило, не наступает, хотя восстановление циркуляции крови в соответствующей области может наблюдаться очень рано. Это происходит, с одной стороны, благодаря компенсаторной перестройке коллатеральных сосудов, а с другой - вследствие развития и роста новых мелких сосудов - капилляров. Новообразование капилляров начинается с того, что цитоплазма эндоте-лиальных клеток артериол и венул набухает в виде почки, затем эндотели-альные клетки подвергаются делению. По мере роста эндотелиальной почки в ней появляется полость. В развитии и росте эндотелиальной почки участвуют перициты, которые своими факторами оказывают влияние на пролиферацию эндотелиоцитов. Такие слепо заканчивающиеся трубки растут навстречу друг другу и смыкаются концами. Цитоплазматические перегородки между ними истончаются и прорываются, и во вновь образованном капилляре устанавливается циркуляция крови.
381
Лимфатические сосуды после их повреждения регенерируют несколько медленнее, чем кровеносные. Регенерация лимфатических сосудов может происходить за счет или почкования дистальных концов эндотелиальных трубок, или перестройки лимфатических капилляров в отводящие сосуды.
13.3. СЕРДЦЕ
Сердце (соr) - основной орган, приводящий в движение кровь.
Развитие. Первая закладка сердца появляется в начале 3-й нед развития у эмбриона длиной 1,5 мм в виде парного скопления мезенхимных клеток, которые расположены под висцеральным листком спланхнотома. Позднее эти скопления превращаются в две удлиненные трубочки, впадающие вместе с прилегающими висцеральными листками спланхнотома мезодермы в цело-мическую полость тела (рис. 13.19). В дальнейшем мезенхимные трубки сливаются и из их стенок образуются тканевые элементы эндокарда. Та область висцеральных листков спланхнотома мезодермы, которая прилежит к этим трубкам, получила название миоэпикардиальных пластинок. Последние приближаются к закладке эндокарда, окружают ее снаружи и сливаются друг с другом. Этот процесс идет в краниокаудальном направлении. Вначале возникают желудочковые, затем предсердные и синусно-предсердные зоны будущего сердца. Миоэпикардиальные пластинки дифференцируются на две части: во внутренней, прилежащей к мезенхимной трубке, находятся стволовые кардио-миобласты, а в наружной - тканевые элементы эпикарда.
Клетки зачатка миокарда - кардиомиобласты - делятся и дифференцируются в кардиомиоциты (см. главу 9). Их объем увеличивается, и на 2-м мес развития зародыша в них появляются миофибриллы с поперечной исчерченностью. Z-полоски появляются одновременно с саркотубулярной сетью и поперечными инвагинациями клеточной мембраны (Т-системы). На плазмолеммах контактирующих кардиомиоцитов местами отмечаются десмосомоподобные структуры. Формирующиеся в кардиомиоцитах миофибриллы также прикрепляются к плазмолеммам, где позднее образуются вставочные диски.
В конце 2-го мес появляются признаки формирования проводящей системы, кардиомиоциты которой отличаются многоядерностью, замедленной дифференцировкой миофибриллярного аппарата. К 4-му мес заканчивается образование всех отделов проводящей системы сердца. Развитие мышечной ткани левого желудочка происходит быстрее, чем правого.
Клапаны сердца - предсердно-желудочковые и желудочково-сосудистые - развиваются в основном как дупликатура эндокарда.
Левый предсердно-желудочковый клапан появляется в виде эндокардиального валика, в который позднее (у эмбриона 2,5 мес) начинает врастать соединительная ткань из эпикарда. На 4-м мес внутриутробного периода из эпикарда в створку клапана врастает пучок коллагеновых волокон, образующий в будущем фиброзную пластинку. Правый предсердно-желудочковый клапан закладывается как мышечно-эндокардиальный валик. С 3-го мес развития зародыша мышечная ткань правого атриовентрикуляр-ного клапана уступает место соединительной ткани, врастающей со стороны миокарда и эпикарда. У взрослого человека мышечная ткань сохраняется в виде рудимента только с предсердной стороны в основании клапана. Таким образом, предсердно-желудочковые клапаны являются производными не только эндокарда, но и соединительной ткани миокарда и эпикарда. Аортальные клапаны имеют двойное происхождение: синусная сторона их образуется из соединительной ткани фиброзного кольца, которая покрывается эндотелием, а желудочковая - из эндокарда. Первые нервные терминали выявляются в предсердиях 5,5-недельных эмбрионов человека, а на 8-й нед в предсердиях обнаруживаются ганглии, состоящие из 4-10 нейробластов. Из клеток нервного гребня,
382
мигрировавших в зачаток предсердий, образуются холинергические нейроны, глиоциты и мелкие гранулярные клетки. Холинергический и адренергический нервные аппараты сердца развиваются почти одновременно. Врастание нервных волокон в развивающееся сердце идет поэтапно. Сначала появляются нервные волокна в правом, затем в левом предсердии, позже - в правом, затем в левом желудочке. При этом вначале в предсердиях выявляются веточки от симпатических стволов, а позднее - ветви грудных симпатических волокон.
Рис. 13.19. Развитие сердца. Поперечные разрезы зародышей на трех последовательных стадиях формирования сердца (по Штралю, Гису и Борну):
383
а - две парные закладки сердца; б - их сближение; в - слияние в одну непарную закладку. 1 - эктодерма; 2 - энтодерма; 3 - париетальный листок спланхнотома; 4 - висцеральный листок спланхнотома; 5 - хорда; 6 - нервная пластинка; 7 - сомит; 8 - вторичная полость тела; 9 - эндотелиальная закладка сердца (парная); 10 - нервный желобок; 11 - нервные валики; 12 - нисходящая аорта (парная); 13 - образующаяся головная кишка; 14 - головная кишка; 15 - спинная сердечная брыжейка; 16 - полость сердца; 17 - эпикард; 18 - миокард; 19 - эндокард; 20 - околосердечная сумка; 21 - перикардиальная полость; 22 - редуцирующаяся брюшная сердечная брыжейка.
Рис. 13.20. Строение стенки сердца: 1 - эндотелий; 2 - субэндотелиальный слой; 3 - мышечно-эластический слой; 4 - капилляры; 5 - атипичные мышечные клетки (проводящие миоциты); 6 - типичные кардиомиоциты миокарда (микрофотография, малое увеличение).
384
Строение. В стенке сердца различают три оболочки: внутреннюю - эндокард, среднюю, или мышечную, - миокард, и наружную, или серозную, - эпикард (рис. 13.20).
13.3.1. Эндокард
Эндокард (endocardium) выстилает изнутри камеры сердца, сосочковые мышцы, сухожильные нити, а также клапаны сердца. Толщина эндокарда в различных участках неодинакова. Он толще в левых камерах сердца, особенно на межжелудочковой перегородке и у устья крупных артериальных стволов - аорты и легочной артерии, а на сухожильных нитях значительно тоньше. Поверхность эндокарда, обращенная в полость сердца, выстлана эндотелием, состоящим из полигональных клеток, лежащих на толстой базальной мембране (см. рис. 13.20). За ним следует субэндоте-лиальный слой, образованный соединительной тканью, богатой мало-дифференцированными соединительнотканными клетками. Глубже располагается мышечно-эластический слой, в котором эластические волокна переплетаются с гладкими мышечными клетками. Эластические волокна гораздо лучше выражены в эндокарде предсердий, чем в эндокарде желудочек. Гладкие мышечные клетки сильнее всего развиты в эндокарде у места выхода аорты и могут иметь многоотростчатую форму. Самый глубокий слой эндокарда - наружный соединительнотканный - лежит на границе с миокардом. Он состоит из соединительной ткани, содержащей толстые эластические, коллагеновые и ретикулярные волокна.
Питание эндокарда осуществляется главным образом диффузно за счет крови, находящейся в камерах сердца. Кровеносные сосуды имеются лишь в наружном соединительнотканном слое эндокарда.
Клапаны
Между предсердиями и желудочками сердца, а также желудочками и крупными сосудами располагаются клапаны. Предсердно-желудочковый (атриовен-трикулярный) клапан в левой половине сердца двустворчатый, в правой - трехстворчатый. Они представляют собой покрытые эндотелием тонкие фиброзные пластинки из плотной волокнистой соединительной ткани с небольшим количеством клеток (рис. 13.21). Эндотелиальные клетки, покрывающие клапан, частично перекрывают друг друга в виде черепицы или образуют пальцевидные вдавливания цитоплазмы одной клетки в другую. Кровеносных сосудов створки клапанов не имеют. В субэндотелиальном слое выявлены тонкие кол-лагеновые волокна, которые постепенно переходят в фиброзную пластинку створки клапана, а в месте прикрепления дву- и трехстворчатого клапанов - в фиброзные кольца. В основном веществе створок клапанов обнаружено большое количество гликозаминогликанов.
Строение предсердных и желудочковых частей створок клапанов неодинаково.
Предсердная сторона их имеет гладкую поверхность, здесь в субэндотелиаль-ном слое располагаются густое сплетение эластических волокон и пучки гладких мышечных клеток. Количество мышечных пучков увеличивается в основании клапана. Желудочковая сторона имеет неровную поверхность. Она снабжена выростами, от которых начинаются сухожильные нити (chordae tendineae). В этой области под эндотелием располагается лишь небольшое количество эластических волокон. На границе между восходящей частью дуги аорты и левым желудочком сердца локализуются аортальные клапаны. По своему строению они имеют много общего с предсердно-желудочковыми клапанами и клапанами легочной артерии. На вертикальном разрезе в створке клапана можно различить три слоя: внутренний, средний и наружный. Внутренний слой, обращенный к желудочку сердца, представляет собой продолжение эндокарда. Эндотелий этого слоя характеризуется наличием пучков филаментов толщиной 5-8 нм и многочисленных пиноцитозных пузырьков. В субэндотелиальном слое содержатся фибробласты с длинными тонкими
385
отростками, которые в виде консолей поддерживают эндотелиальные клетки. К субэндотелиальному слою прилежат плотные пучки коллагеновых фибрилл, идущих продольно и поперечно, за которым следует смешанная эластикоколлагеновая прослойка. Средний слой тонкий, состоит из рыхлой волокнистой соединительной ткани, богатой клеточными элементами.
Рис. 13.21. Предсердно-желудочковый (атриовентрикулярный) клапан сердца человека (по В. Я. Бочарову):
I - предсердная сторона; II - желудочковая сторона; 1 - сердечная мышечная ткань в основании створки клапана; 2 - кровеносные сосуды; 3 - эндокард левого желудочка; 4 - миокард левого желудочка
Наружный слой, обращенный к аорте, кроме эндотелия, содержит коллагеновые волокна, которые берут начало от фиброзного кольца вокруг аорты. Опорный скелет сердца образован фиброзными кольцами между предсердиями и желудочками и плотной соединительной тканью в устьях крупных сосудов. Кроме плотных пучков коллагеновых волокон, в составе «скелета» сердца имеются эластические волокна, а иногда бывают даже хрящевые пластинки.
13.3.2. Миокард
Многотканевая мышечная оболочка сердца (myocardium) состоит из тесно связанных между собой поперечнополосатых мышечных клеток - кардио-миоцитов (см. главу 9). Между мышечными элементами располагаются прослойки рыхлой соединительной ткани, сосуды, нервы. Различают сократительные(рабочие) сердечные миоциты (myociti cardiaci), проводящие сердечные миоциты (myocyti cardiacus conducens),входящие в состав так называемой проводящей системы сердца, и секреторные предсердные кардиомиоциты (cardiomyocyti atrialis secretans).
Сердечные сократительные (рабочие) миоциты характеризуются рядом структурных и цитохимических особенностей. На продольных срезах они почти прямоугольной формы, длина колеблется от 50 до 120 мкм, ширина составляет 15-20 мкм. Клетки покрыты сарколеммой, состоящей из плазмо-
леммы и базальной мембраны, в которую вплетаются тонкие коллагеновые и эластические волокна, образующие «наружный скелет» кардиомиоцитов. Базальная мембрана кардиомиоцитов, содержащая большое количество гликопротеинов, способных связывать Са2+, может принимать участие наряду с саркотубулярной сетью и митохондриями в перераспределении Са2+ в цикле сокращение - расслабление. Базальная
386
мембрана латеральных сторон - кардиомиоцитов инвагинирует в канальцы Т-системы (в отличие от соматических мышечных волокон).
Кардиомиоциты желудочков значительно интенсивнее пронизаны канальцами Т- системы, чем соматические мышечные волокна. Канальцы L-системы (латеральные расширения саркоплазматической сети) и Т-системы образуют диады (один каналец L- системы и один - Т-системы), реже триады (два канальца L-системы и один - Т-системы). В центральной части миоцита расположены одно-два ядра овальной или удлиненной формы. Между миофибриллами находятся многочисленные митохондрии.
В отличие от желудочковых кардиомиоцитов, форма которых близка к цилиндрической, предсердныемиоциты чаще отростчатые, их размеры меньше. В миоцитах предсердий меньше митохондрий, миофибрилл саркоплазматической сети. В пред-сердных кардиомиоцитах менее выражена активность сукцинатдегидрогеназы, но более высока активность ферментов, связанных с метаболизмом гликогена (фосфо-рилаза, гликогенсинтетаза и др.). Отличительными особенностями этих кардиомио-цитов являются относительно хорошо развитая гранулярная эндоплазматическая сеть и значительное развитие комплекса Гольджи. Указанные выше морфологические признаки связаны с наличием в предсердных кардиомиоцитах специфических предсердных гранул, содержащих гормоноподобные пептиды (атриопептин, натрийуретический фактор типа С). Секреторные сократительные предсердные миоциты (эндокринные предсердные миоциты) располагаются преимущественно в правом предсердии и ушках сердца. При растяжении предсердий секрет поступает в кровь и воздействует на собирательные трубочки почки, клетки клубочковой зоны коры надпочечников, участвующие в регуляции объема внеклеточной жидкости и уровня артериального давления.
Еще одной отличительной чертой предсердных миоцитов у многих млекопитающих является слабое развитие Т-системы канальцев. В тех предсердных мио-цитах, где нет Т- системы, на периферии клеток, под сарколеммой, располагаются многочисленные пиноцитозные пузырьки и кавеолы. Полагают, что эти пузырьки и кавеолы являются функциональными аналогами Т-канальцев.
Энергия, необходимая для сокращения сердечной мышцы, образуется главным образом за счет взаимодействия АДФ с креатинфосфатом, в результате чего возникают креатин и АТФ. Главным субстратом дыхания в сердечной мышце являются жирные кислоты и в меньшей степени - углеводы. Процессы анаэробного расщепления углеводов (гликолиз) в миокарде (кроме проводящей системы) человека практического значения не имеют.
Кардиомиоциты сообщаются между собой в области вставочных дисков (disci intercalati). В гистологических препаратах они имеют вид темных полосок. Строение вставочного диска на его протяжении неодинаково (см. рис. 9.10 и 9.11). Различают десмосомы, места вплетения миофибрилл в плазмо-лемму (промежуточные контакты) и щелевые контакты - нексусы. Если первые два участка диска выполняют механическую функцию, то третий осуществляет электрическую связь кардиомиоцитов. Нексусы обеспечивают быстрое проведение импульсов от клетки к клетке. Зоны прикрепления миофибрилл всегда располагаются на уровне, соответствующем очередной Z-линии.
Иммуноцитохимически в этих участках показано наличие L-актинина и винку-лина. Как и в скелетных мышцах, в кардиомиоцитах цитоскелет представлен промежуточными филаментами диаметром 10 нм. Эти филаменты, состоящие из белка десмина или скелетина, располагаются как вдоль длинной оси, так и поперек. При этом промежуточные нити проходят поперек через М- и Z-линии миофибрилл, скрепляя их и поддерживая соседние саркомеры на одном уровне.
387
С помощью вставочных дисков кардиомиоциты соединяются в мышечные «волокна». Продольные и боковые связи (анастомозы) кардиомиоцитов обеспечивают функциональное единство миокарда.
Между кардиомиоцитами находится интерстициальная соединительная ткань, содержащая большое количество кровеносных и лимфатических капилляров. Каждый миоцит контактирует с двумя-тремя капиллярами.
Проводящая система сердца
Проводящая система сердца (systema conducens cardiacum) - мышечные клетки, формирующие и проводящие импульсы к сократительным клеткам сердца. В состав проводящей системы входят синусно-предсердный (синусный) узел, предсердножелудочковый (атриовентрикулярный) узел, предсердно-желудочковый пучок (пучок Гиса) и их разветвления (волокна Пуркинье), передающие импульсы на сократительные мышечные клетки.
Различают несколько типов мышечных клеток, которые в неодинаковых соотношениях находятся в различных отделах этой системы (рис. 13.22).
Клетки узла проводящей системы. Формирование импульса происходит в синусном узле, центральную часть которого занимают возбуждающие кар-диомиоциты - водители ритма, или пейсмекерные клетки (Р-клетки), способные к самопроизвольным сокращениям (см. рис. 13.22). Они отличаются небольшими размерами, многоугольной формой с максимальным диаметром 8-10 мкм, небольшим количеством миофибрилл, не имеющих упорядоченной ориентировки.
Миофиламенты в составе миофибрилл расположены рыхло. А- и I-диски различаются нечетко. Митохондрии небольшие, округлой или овальной формы, немногочисленные. Саркоплазматическая сеть развита слабо. Т-система отсутствует, но вдоль плазмолеммы находится много пиноцитозных пузырьков и кавеол, которые в 2 раза увеличивают мембранную поверхность клеток. Высокое содержание свободного кальция в цитоплазме этих клеток при слабом развитии саркоплазматической сети обусловливает способность клеток синусного узла генерировать импульсы к сокращению. Поступление необходимой энергии обеспечивается преимущественно процессами гликолиза. Между клетками встречаются единичные десмосомы и нексусы.
По периферии узла располагаются переходные кардиомиоциты. Это тонкие, вытянутые клетки, поперечное сечение которых меньше поперечного сечения типичных сократительных кардиомиоцитов. Миофибриллы более развиты, ориентированы параллельно друг другу, но не всегда. Отдельные переходные клетки могут содержать короткие Т-трубочки. Переходные клетки сообщаются между собой как с помощью простых контактов, так и путем образования более сложных соединений типа вставочных дисков. Функциональное значение этих клеток состоит в передаче возбуждения от Р- клеток к клеткам пучка и рабочему миокарду.
388
Рис. 13.22. Кардиомиоциты проводящей системы сердца (по П. П. Румянцеву): I - схема расположения элементов проводящей системы сердца; II - кардиомиоциты синусного и предсердно-желудочкового узлов: а - Р-клетки; б - переходные клетки; III - кардиомиоцит из пучка Гиса; IV - кардиомиоцит из ножек пучка Гиса (волокна Пуркинье). 1 - ядра; 2 - миофибриллы; 3 - митохондрии; 4 - саркоплазма; 5 - глыбки гликогена; 6 - промежуточные филаменты; 7 - миофиламентные комплексы
389
Кардиомиоциты предсердно-желудочкового пучка проводящей системы (пучка Гиса) и его ножек (волокон Пуркинье) содержат относительно длинные миофибриллы, имеющие спиралевидный ход. В функциональном отношении они являются передатчиками возбуждения от переходных клеток к клеткам рабочего миокарда желудочков.
Мышечные клетки проводящей системы в стволе и разветвлениях ножек ствола проводящей системы располагаются небольшими пучками, они окружены прослойками рыхлой волокнистой соединительной ткани. Ножки пучка разветвляются под эндокардом, а также в толще миокарда желудочков. Кардиомиоциты проводящей системы разветвляются в миокарде и проникают в сосочковые мышцы. Это обусловливает натяжение сосочковыми мышцами створок клапанов (левого и правого) еще до того, как начнется сокращение миокарда желудочков.
По строению кардиомиоциты пучка отличаются большим диаметром (15 мкм и более), почти полным отсутствием Т-систем, тонкостью миофи-брилл, которые без определенного порядка располагаются главным образом по периферии клетки. Ядра, как правило, расположены эксцентрично. Эти клетки в совокупности образуют предсердножелудочковый пучок и ножки пучка (волокна Пуркинье). Кардиомиоциты в составе этих волокон самые крупные не только в проводящей системе, но и во всем миокарде. В них много гликогена, редкая сеть миофибрилл, нет Т-трубочек. Клетки связаны между собой нексусами и десмосомами.
Впроводящей системе сердца преобладают энзимы, принимающие участие в анаэробном гликолизе (фосфорилаза, дегидрогеназа молочной кислоты). Понижена активность аэробных ферментов цикла трикарбоновых кислот и митохондриальной цепи переноса электронов (цитохромоксидаза). В проводящих волокнах содержание калия ниже, а кальция и натрия выше, чем в сократительных кардиомиоцитах.
Вмиокарде много афферентных и эфферентных нервных волокон (рис. 13.23, а, б). Типичных нервно-мышечных синапсов здесь нет. Раздражение нервных волокон, окружающих проводящую систему, а также нервов, подходящих к сердцу, вызывает изменение ритма сердечных сокращений. Это указывает на решающую роль нервной системы в ритме сердечной деятельности, а следовательно, и в передаче импульсов по проводящей системе.
13.3.3. Эпикард и перикард
Наружная оболочка сердца, или эпикард (epicardium), представляет собой висцеральный листок перикарда(pericardium). Эпикард образован тонкой (не более 0,3-0,4 мм) пластинкой соединительной ткани, плотно срастающейся с миокардом. Свободная поверхность ее покрыта мезотелием.
390
