Добавил:
Здесь собраны файлы для СФ и общие дисциплины других факультетов. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Учебник (Афанасьев) - гистология, эмбриология

.pdf
Скачиваний:
150
Добавлен:
07.09.2025
Размер:
32.68 Mб
Скачать

соответствующих по флюоресценции и электронно-микроскопической характеристике пузырькам клеток мозгового вещества надпочечника. МИФ-клетки окружены глиальной оболочкой. На телах МИФ-клеток, реже на их отростках, видны холинергические синапсы, образованные терминалями преганглионарных волокон. МИФ-клетки рассматриваются как внутриганглионарная тормозная система. Они, возбуждаясь преганглионарными холинергическими волокнами, выделяют катехоламины. Последние, распространяясь диффузно или по сосудам ганглия, оказывают тормозящее влияние на синаптическую передачу с преган-глионарных волокон на периферические нейроны ганглия.

Узлы парасимпатического отдела автономной нервной системы лежат или вблизи иннервируемого органа, или в его интрамуральных нервных сплетениях. Преганглионарные волокна заканчиваются на телах нейронов, а чаще на их дендритах холинергическими синапсами. Аксоны этих клеток (постганглионарные волокна) следуют в мышечной ткани иннервируемых органов в виде варикозных терминалей и образуют нейро-мышечные холи-нергические синапсы.

Интрамуральные сплетения. Значительное количество нейронов автономной нервной системы сосредоточено в нервных сплетениях самих иннервируемых органов: в пищеварительном тракте, сердце, мочевом пузыре и др.

Узлы интрамуральных сплетений, как и другие автономные узлы, содержат, кроме эфферентных нейронов, рецепторные и ассоциативные клетки местных рефлекторных дуг. Морфологически в интрамуральных нервных сплетениях различают три типа клеток, описанных Догелем. Длинноаксонные эфферентные нейроны (клетки I типа) имеют много коротких ветвящихся дендритов и длинный нейрит, уходящий за пределы ганглия (см. рис. 11.8, а). Равноотростчатые (афферентные) нейроны (клетки II типа) содержат несколько отростков. По морфологическим признакам нельзя определить, какой из них аксон, так как отростки, не разветвляясь, уходят далеко от тела клетки. Экспериментально установлено, что их нейриты образуют синапсы на клетках I типа. Клетки III типа (ассоциативные) посылают свои отростки в соседние ганглии, где они заканчиваются на дендритах их нейронов.

Специфическими особенностями отличается интрамуральная система пищеварительного тракта (энтеральная система). В стенке пищеварительной трубки расположены три нервных сплетения: подсерозное, мышечно-кишечное и под-слизистое, - содержащие скопления нервных клеток, связанные пучками нервных волокон (рис. 11.9). Наиболее массивное нервное сплетение - мышечно-кишечное - расположено между продольным и циркулярным мышечными слоями. Электронно-микроскопически и гистохимически в межмышечном сплетении выявлены холинергические нейроны, возбуждающие двигательную активность кишечника, и тормозные нейроны, представленные адренергическими и неадренер-гическими (пуринергическими) нейронами. Морфологически пуринергические нейроны характеризуются содержанием в перикарионе и отростках крупных (размером 80-120 нм) электронно-плотных гранул. В составе интрамуральных вегетативных ганглиев содержатся и пептидергические нейроны, выделяющие ряд гормонов (вазоинтестинальный пептид, вещество Р, соматостатин и др.). Считается, что эти нейроны осуществляют нервные и эндокринные функции, а также модулируют функциональную деятельность эндокринных аппаратов различных органов.

301

Рис. 11.9. Интрамуральные нервные сплетения пищеварительного тракта (схема по А. Д. Ноздрачеву):

I - слизистая оболочка; II - подслизистая основа; III - мышечная оболочка; IV - серозная оболочка. 1 - подслизистое сплетение; 2 - мышечно-кишечное сплетение; 3 - симпатический ганглий; 4 - постганглионарные симпатические волокна; 5 - афферентные волокна (дендриты нейронов спинномозгового ганглия); 6 - симпатические преганглионарные волокна; 7 - афферентные волокна блуждающего нерва; 8 - афферентные волокна местных рефлекторных путей.

302

Постганглионарные волокна нейронов интрамуральных сплетений в мышечной ткани органа образуют терминальное сплетение, тонкие стволы которого содержат несколько варикозно-расширенных аксонов. Варикозные расширения (0,5-2 мкм в диаметре) содержат синаптические пузырьки и митохондрии. Межварикозные участки (шириной 0,1-0,5 мкм) заполнены нейротрубочками и нейрофиламента-ми. Синаптические пузырьки холинергических нейро-мышечных синапсов мелкие светлые (размером 30-60 нм), адренергических - мелкие гранулярные (размером 50-60 нм).

11.5. ОБОЛОЧКИ ГОЛОВНОГО И СПИННОГО МОЗГА

Головной и спинной мозг покрыт тремя оболочками: мягкой, непосредственно прилегающей к тканям мозга, паутинной и твердой, которая граничит с костной тканью черепа и позвоночника.

Мягкая мозговая оболочка непосредственно прилежит к ткани мозга и отграничена от нее краевой глиальной мембраной. В рыхлой соединительной ткани оболочки имеются большое количество кровеносных сосудов, питающих мозг, многочисленные нервные волокна, концевые аппараты и одиночные нервные клетки.

Паутинная оболочка представлена тонким слоем рыхлой волокнистой соединительной ткани. Между ней и мягкой мозговой оболочкой находится сеть перекладин, состоящих из тонких пучков коллагеновых и тонких эластических волокон. Эта сеть связывает оболочки между собой. Между мягкой мозговой оболочкой, повторяющей рельеф поверхности мозга, и паутинной, проходящей по возвышенным участкам, не заходя в углубления, располагается подпаутинное (субарахноидальное) пространство, пронизанное тонкими коллагеновыми и эластическими волокнами, связывающими оболочки между собой. Субарахноидальное пространство сообщается с желудочками мозга и содержит цереброспинальную жидкость.

Твердая мозговая оболочка образована плотной волокнистой соединительной тканью, содержащей много эластических волокон. В полости черепа она плотно сращена с надкостницей. В спинномозговом канале твердая мозговая оболочка отграничена от периоста позвонков эпидуральным пространством, заполненным слоем рыхлой волокнистой соединительной ткани, что обеспечивает ей некоторую подвижность. Между твердой мозговой и паутинной оболочками располагается субдуральноепространство. В субдураль-ном пространстве содержится небольшое количество жидкости. Оболочки со стороны субдурального и субарахноидального пространства покрыты слоем плоских клеток глиальной природы.

11.6. ВОЗРАСТНЫЕ ИЗМЕНЕНИЯ НЕРВНОЙ СИСТЕМЫ

Изменения в центральной нервной системе в раннем постнатальном онтогенезе связаны с ее созреванием. У новорожденных для корковых нейронов очень характерно высокое ядерно-цитоплазматическое отношение. С возрастом размеры нейронов увеличиваются за счет увеличения объема цитоплазмы. При этом наиболее быстро (в первые 3 мес жизни) увеличиваются размеры пирамидных нейронов II и IV слоев. Более медленное увеличение характерно для клеток-зерен и малых пирамидных нейронов IV слоя. Увеличивается число синаптических контактов.

Возрастные изменения коры большого мозга. В процессе развития коры большого мозга человека в онтогенезе отмечаются изменения в распределении и структуре основных ее компонентов - нейронов и глиоцитов, а также кровеносных сосудов. Уже к моменту рождения представлены ней-роглиососудистые ансамбли коры полушарий большого мозга. Однако большинство нейронов имеют неопределенную форму со слабовыражен-ными отростками и небольшие размеры. Группировки нейронов, особенно «гнездного типа», как и локальные волокнистые сети, выражены крайне слабо. Глиальные

303

клетки мелкие. Кровеносные сосуды мягкой оболочки тонкие, капиллярная сеть редкая, одинаковая по плотности во всех слоях коры (рис. 11.10).

На первом году жизни наблюдаются типизация формы пирамидных и звездчатых нейронов, их увеличение, развитие дендритных и аксонных арборизаций, внутриансамблевых связей по вертикали. К 3 годам в ансамблях выявляются «гнездные» группировки нейронов, более четко сформированные вертикальные дендритные пучки и пучки радиальных волокон. Увеличиваются веретенообразные звездчатые нейроны, распределяющие свои аксонные коллатерали в вертикальном направлении. К 5-6 годам нарастает полиморфизм нейронов, отражающий их функциональную специализацию; усложняется система внутриансамблевых связей по горизонтали за счет роста в длину и разветвлений боковых и базальных дендритов пирамидных нейронов и развития боковых терминалей их апикальных ден-дритов. К 9-10 годам увеличиваются клеточные группировки, значительно усложняется структура короткоаксонных нейронов и расширяется сеть аксонных коллатералей всех форм интернейронов, образующих в ансамблях различных корковых зон отчетливо структурированные вертикальные колонки. К 12-14 годам в ансамблях четко обозначаются специализированные формы пирамидных нейронов, все типы интернейронов достигают высокого уровня дифференцировки; во всех ансамблях удельный объем волокон значительно выше удельного объема клеточных элементов; значительно увеличиваются диаметр и толщина стенок внутрикорковых артерий. К 18 годам ансамблевая организация коры по основным параметрам своей архитектоники достигает уровня таковой у взрослых.

У взрослых людей по сравнению с новорожденными уменьшается число нейронов в единице объема коры. Уменьшение зависит от гибели части нейронов, но главным образом от разрастания нервных волокон и нейро-глии, что приводит к увеличению толщины коры и механическому «раздвиганию» нейронов. У новорожденных в нейронах средней лобной извилины отсутствует хроматофильное вещество, его количество в нейронах увеличивается у ребенка к 3-6 мес, а в двухлетнем возрасте становится таким же, как и у взрослых. Формирование миелиновых оболочек вокруг аксонов в ряде областей коры (средняя и нижняя лобные извилины, средняя и нижняя височные извилины и др.) происходит после рождения ребенка.

304

Рис. 11.10. Возрастные изменения коры большого мозга человека (нейроглиососудистые ансамбли) (по Л. К. Семеновой, В. А. Васильевой, Т. А. Цехмистренко):

305

III, IV, V - пластинки (слои) коры большого мозга. 1 - группы нейронов; 2 - глиоциты; 3 - звездчатые клетки; 4 - пирамидные нейроны; 5 - дендритные и аксонные арборизации; 6 - вертикальные дендритные пучки и пучки радиальных волокон; 7 - кровеносные сосуды

Изменения в центральной нервной системе в старческом возрасте связаны прежде всего со склеротическими изменениями сосудов мозга. В старости мягкая и паутинная оболочки мозга утолщаются. В них могут появиться отложения извести. Наблюдается атрофия коры большого мозга, прежде всего лобной и теменной долей. Уменьшается число нейронов в единице объема коры, зависит это главным образом от гибели клеток. Нейроны уменьшаются в размере, частично теряют базофильное вещество, ядра уплотняются, их контур становится неровным. Быстрее других изменяются пирамидные нейроны V слоя двигательной зоны коры и грушевидные клетки коры мозжечка. В нейронах различных отделов нервной системы накапливаются гранулы липофусцина.

11.7. КРОВОСНАБЖЕНИЕ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Кровоснабжение спинного мозга осуществляется через передние и задние корешковые артерии, входящие в него с передними и задними корешками и образующие артериальную сеть в мягкой мозговой оболочке. Здесь формируются продольные артерии, из которых главная - передняя спинальная артерия, проходящая в передней срединной щели.

Капиллярная сеть в сером веществе более густая, чем в белом. Вены спинного мозга не сопровождают артерии. Мелкие вены, идущие с периферии спинного мозга и из передней срединной щели, образуют сплетение в мягкой мозговой оболочке, особенно густое на дорсальной поверхности спинного мозга, откуда кровь оттекает в вены, сопровождающие вентральные и дорсальные корешки.

Артериальное кровоснабжение головного мозга осуществляется внутренними сонными и позвоночными артериями, которые сливаются в основании мозга в базилярную артерию. Ветви этих артерий проходят в мягкую мозговую оболочку, и отсюда мелкие веточки следуют в вещество мозга. Капиллярная сеть в сером веществе головного мозга также более густая, чем в белом. Капилляры мозга имеют непрерывную эндотелиальную выстилку и хорошо развитую базальную мембрану. Здесь происходит избирательный обмен веществ между нервной тканью и кровью, в котором принимает участие так называемыйгематоэнцефалический барьер. Избирательность обмена веществ между тканью и кровью обеспечивается, помимо морфологических особенностей самих капилляров (сплошная эндотелиальная выстилка с хорошо развитыми десмосомами, плотная базальная мембрана), также и тем, что отростки глиоцитов, прежде всего астроцитов, образуют на поверхности капилляров слой, отграничивающий нейроны от непосредственного соприкосновения с сосудистой стенкой (рис. 11.11).

306

Рис. 11.11. Строение гематоэнцефалического барьера (схема):

1 - эндотелий гемокапилляра; 2 - базальная мембрана; 3 - тело астроцита; 4 - пластинчатые окончания отростков астроцитов; 5 - нейрон; 6 - отростки нейронов (нейропиль); 7 - олигодендроглиоцит

Контрольные вопросы

1.Какие виды нервных волокон входят в состав нерва?

2.Кора большого мозга: фило- и онтогенетические этапы развития.

3.Модульный принцип организации коры большого мозга как основа деятельности центральной нервной системы человека.

4.Развитие, строение коры и ядер мозжечка. Характеристика нервных связей в коре мозжечка.

5.Рефлекторные дуги (соматическая и вегетативные). Нейронный состав, топография.

Глава 12. ОРГАНЫ ЧУВСТВ

12.1. ОБЩАЯ МОРФОФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА И КЛАССИФИКАЦИЯ

Органы чувств обеспечивают восприятие различных раздражителей, действующих на организм; преобразование и кодирование внешней энергии в нервный импульс, передачу по нервным путям в подкорковые и корковые центры, где происходят анализ поступившей информации и формирование субъективных ощущений. Органы чувств - это анализаторы внешней и внутренней среды, которые обеспечивают адаптацию организма к конкретным условиям.

Соответственно в каждом анализаторе различают три части: периферическую

(рецепторную), промежуточнуюи центральную.

Периферическая часть представлена органами, в которых находятся специализированные рецепторные клетки. По специфичности восприятия стимулов

307

различают механорецепторы (рецепторы органа слуха, равновесия, тактильные рецепторы кожи, рецепторы аппарата движения, барорецепторы), хеморецепторы (органов вкуса, обоняния, сосудистые интерорецепторы), фоторецепторы (сетчатки глаза), терморецепторы (кожи, внутренних органов), болевые рецепторы.

Промежуточная (проводниковая) часть анализатора представляет собой цепь вставочных нейронов, по которым нервный импульс от рецепторных клеток передается к корковым центрам. На этом пути могут быть промежуточные, подкорковые, центры, где происходят обработка афферентной информации и переключение ее на эфферентные центры.

Центральная часть анализатора представлена участками коры больших полушарий. В центре осуществляются анализ поступившей информации, формирование субъективных ощущений. Здесь информация может быть заложена в долговременную память или переключена на эфферентные пути.

Классификация органов чувств . В зависимости от строения и функции рецепторной части органы чувств делятся на три типа.

К первому типу относятся органы чувств, у которых рецепторами являются специализированные нейросенсорные клетки (орган зрения, орган обоняния), преобразующие внешнюю энергию в нервный импульс.

Ко второму типу относятся органы чувств, у которых рецепторами являются не нервные, а эпителиальные клетки (сенсоэпителиальные). От них

преобразованное раздражение передается дендритам чувствительных нейронов, которые воспринимают возбуждение сенсоэпителиальных клеток и порождают нервный импульс (органы слуха, равновесия, вкуса).

К третьему типу относятся проприоцептивная (скелетно-мышечная) кожная и висцеральная сенсорные системы. Периферические отделы в них представлены различными инкапсулированными и неинкапсулированны-ми рецепторами (см. главу 10).

12.2. ОРГАН ЗРЕНИЯ

Глаз (ophthalmos oculus) - орган зрения, представляющий собой периферическую часть зрительного анализатора, в котором рецепторную функцию выполняют нейросенсорные клетки сетчатой оболочки.

12.2.1. Развитие глаза

Глаз развивается из различных эмбриональных зачатков (рис. 12.1). Сетчатка и зрительный нерв формируются из нервной трубки путем образования сначала так называемых глазных пузырьков,сохраняющих связь с эмбриональным мозгом при помощи полых глазных стебельков. Передняя часть глазного пузырька впячивается внутрь его полости, благодаря чему он приобретает форму двустенного глазного бокала. Часть эктодермы, расположенная напротив отверстия глазного бокала, утолщается, инвагинирует и отшнуровывается, давая начало зачатку хрусталика. Эктодерма претерпевает эти изменения под влиянием индукторов дифференцировок, образующихся в глазном пузырьке. Первоначально хрусталик имеет вид полого эпителиального пузырька. Затем клетки эпителия его задней стенки удлиняются и превращаются в так называемые хрусталиковые волокна, заполняющие полость пузырька. В процессе развития внутренняя стенка глазного бокала преобразуется в сетчатку, а наружная - в пигментный слой сетчатки. На 4-й нед эмбриогенеза зачаток сетчатки состоит из однородных малодиффе-ренцированных клеток. На 5-й нед появляется разделение сетчатки на два слоя: наружный (от центра глаза) - ядерный, и внутренний слой, не содержащий ядер. Наружный ядерный слой играет роль матричной зоны, где наблюдаются многочисленные фигуры митоза. В результате последующей дивергентной

308

дифференцировки стволовых (матричных) клеток развиваются клеточные диффероны различных слоев сетчатки. Так, в начале 6-й нед из матричной зоны начинают выселяться нейробласты, образующие внутренний слой. В конце 3-го мес определяется слой крупных ганглиозных нейронов. В последнюю очередь в сетчатке появляется наружный ядерный слой, состоящий из нейросенсорных клеток - палочковых иколбочковых нейронов. Происходит это незадолго до рождения. Помимо нейробластов в матричном слое сетчатки образуются глиобласты - источники развития клеток глии.

Рис. 12.1. Развитие глаза:

а-в - сагиттальные разрезы глаз эмбрионов на различных стадиях развития. 1 - эктодерма; 2 - хрусталиковая плакода - будущий хрусталик; 3 - глазной пузырек; 4 - сосудистая выемка; 5 - наружная стенка глазного бокала - будущий пигментный слой сетчатки; 6 - внутренняя стенка глазного бокала; 7 - стебелек - будущий зрительный нерв; 8 - хрусталиковый пузырек.

Высокодифференцированными

среди

них

становятся радиальные

глиоциты (мюллеровы волокна), пронизывающие всю толщу сетчатки.

Стебелек глазного бокала

пронизывается

аксонами,

образующимися в

сетчатке ганглиозных мультиполярных нейронов. Эти аксоны и формируют зрительный нерв , направляющийся в мозг. Из окружающей глазной бокал мезенхимы формируются сосудистая оболочка и склера. В передней части глаза склера переходит в

покрытую

многослойным

плоским

эпителием

(эктодермальным)

прозрачную роговицу. Изнутри

роговица

выстлана

однослойным

эпителием

нейроглиального происхождения. Сосуды и мезенхима, проникающие на ранних стадиях развития внутрь глазного бокала, совместно с эмбриональной сетчаткой принимают участие в образовании стекловидного тела и радужки. Мышца радужки, суживающая зрачок, развивается из краевого утолщения наружного и внутреннего листков глазного бокала, а мышца, расширяющая зрачок, - из наружного листка. Таким образом, обе мышцы радужки по своему происхождению являются нейральными.

12.2.2. Строение глаза

Глазное яблоко (bulbus oculi) состоит из трех оболочек. Наружная (фиброзная) оболочка глазного яблока (tunica fibrosa bulbi), к которой прикрепляются наружные мышцы глаза, обеспечивает защитную функцию. В ней различают передний прозрачный отдел - роговицу и задний непрозрачный отдел - склеру. Средняя (сосудистая) оболочка

(tunica vasculosa bulbi) играет основную роль в обменных процессах. Она имеет три части: часть радужки, часть цилиарного тела и собственно сосудистую - хороидею (choroidea).

Внутренняя оболочка глаза - сетчатка (tunica interna bulbi, retina) - сенсорная,

рецепторная часть зрительного анализатора, в которой происходят под воздействием света фотохимические превращения зрительных пигментов, фототрансдукция, изменение биоэлектрической активности нейронов и передача информации о внешнем мире в подкорковые и корковые зрительные центры.

309

Рис. 12.2. Строение переднего отдела глазного яблока (схема):

1 - роговица; 2 - передняя камера глаза; 3 - радужка; 4 - задняя камера глаза; 5 - хрусталик; 6 - ресничный поясок (циннова связка); 7 - стекловидное тело; 8 - гребенчатая связка; 9 - венозный синус склеры; 10 - ресничное (цилиарное) тело: а - отростки ресничного тела; б - ресничная мышца; 11 - склера; 12 - сосудистая оболочка; 13 - зубчатая линия; 14 - сетчатка

Оболочки глаза и их производные формируют три функциональных аппарата: светопреломляющий, или диоптрический (роговица, жидкость передней и задней камер глаза, хрусталик и стекловидное тело);аккомодационный (радужка, ресничное тело с ресничными отростками); рецепторный аппарат (сетчатка).

Наружная фиброзная оболочка - склера (sclera), образована плотной оформленной волокнистой соединительной тканью, содержащей пучки коллагеновых волокон, между которыми находятся уплощенной формы фибробласты и отдельные эластические волокна (рис. 12.2). Пучки кол-лагеновых волокон, истончаясь, переходят в собственное вещество роговицы.

Толщина склеры в заднем отделе вокруг зрительного нерва наибольшая - 1,2- 1,5 мм, кпереди склера истончается до 0,6 мм у экватора и до 0,3-0,4 мм позади места прикрепления прямых мышц. В области диска зрительного нерва большая часть (2/3) истонченной фиброзной оболочки сливается с оболочкой зрительного нерва, а истонченные внутренние слои образуют решетчатую пластинку (lamina cribrosa). При повышении внутриглазного давления фиброзная оболочка истончается, что является причиной некоторых патологических изменений.

Светопреломляющий аппарат глаза

Светопреломляющий (диоптрический) аппарат глаза включает роговицу, хрусталик, стекловидное тело, жидкость (водянистую влагу) передней и задней камер глаза.

Роговица (cornea) занимает 1/16 площади фиброзной оболочки глаза и, выполняя защитную функцию, отличается высокой оптической гомогенностью, пропускает и преломляет световые лучи и является составной частью светопреломляющего аппарата глаза.

310