Добавил:
Здесь собраны файлы для СФ и общие дисциплины других факультетов. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Физиология - Р2-3 С3

.pdf
Скачиваний:
0
Добавлен:
30.08.2025
Размер:
1.23 Mб
Скачать

эфферентные интрамуральные нейроны представляют собой общий конечный путь для импульсов внутриорганного и экстраорганного (центрального) происхождения. Наличие «местных» механизмов нервной регуляции функций внутренних органов, которая осуществляется с помощью периферических рефлексов ганглиями вегетативной нервной системы, внутриорганными и внеорганными, имеет большое физиологическое значение. В результате ЦНС освобождается от переработки избыточной информации. Кроме того, периферические рефлексы увеличивают надежность регуляции физиологических функций. Эта регуляция может осуществляться и после выключения связи органов с ЦНС.,

Вегетативные центры ЦНС получают информацию о состоянии внутренних органов от интерорецепторов по дендритам биполярных афферентных нейронов, расположенных в межпозвоночных узлах, и по ветвям аксонов интрамуральных афферентных нейронов. Импульсы, поступающие по этим путям в ЦНС, вызывают рефлекторные ответы не только вегетативной, но и соматической нервной системы. Они могут включать также сложные поведенческие реакции организма.

Из сказанного ясно, что внутренние органы обладают богатой чувствительной иннервацией, обеспечивающей деятельность как периферических вегетативных рефлексов, так и реакций, осуществляемых вегетативными центрами мозга.

17.Тонус симпатического и парасимпатического отделов автономной нервной системы. Влияние симпатического и парасимпатического отделов на функции органов. Адаптационно-трофическая функция симпатической нервной системы. Феномен Орбели-Гинецинского.

Тонус симпатического и парасимпатического отделов автономной нервной системы

В естественных условиях симпатические и парасимпатической центры вегетативной нервной системы находятся в состоянии непрерывного возбуждения, получившего название «тонус».Явление постоянного тонуса вегетативной нервной системы проявляется прежде всего в том, что по эфферентным волокнам к органам постоянно идет поток импульсов с определенной частотой следования. Известно, что состояние тонуса парасимпатической системы лучше всего отражает деятельность сердца, особенно сердечный ритм, а состояние тонуса симпатической системы – сосудистая система, в частности, величина артериального давления (в покое или при выполнении функциональных проб). Многие стороны природы тонической активности остаются малоизвестными. Считают, что тонус ядерных образований формируется преимущественно благодаря притоку сенсорной информации из рефлексогенных зон, отдельных групп интерорецепторов, а также соматических рецепторов. При этом не исключается и существование собственных водителей ритма – пейсмекеров локализованных в основном, в продолговатом мозге. Природа тонической активности симпатического, парасимпатического и метасимпатического отделов вегетативной нервной системы может быть связана также и с уровнем эндогенных модуляторов (прямого и косвенного действия), адренореактивности, холинореак-тивности и других видов хемореактивности. Тонус автономной нервной системы следует рассматривать как одно из проявлений гомеостатического состояния и одновременно один из механизмов его стабилизации.

Влияние симпатического и парасемпатического отделов на функции органов

^ Орган, система,

Симпатическая иннервация

Парасимпатическая иннервация

функция

Глаз

Расширяет глазную щель и зрачок,

Суживает глазную щель и зрачок, вызывает

вызывает экзофтальм

энофтальм

Слизистая оболочка

Суживает сосуды

Расширяет сосуды

носа

Слюнные железы

Уменьшает выделение секрета, слюна

Увеличивает выделение секрета, слюна

густая

водянистая

Сердце

Увеличивает частоту и силу сокращений,

Уменьшает частоту и силу сокращений,

повышает кровяное давление, расширяет

снижает кровяное давление, суживает

 

коронарные сосуды

коронарные сосуды

Бронхи

Расширяет бронхи, уменьшает выделение

Суживает бронхи, увеличивает выделение

слизи

слизи

Желудок, кишечник, Понижает секрецию, ослабляет

Повышает секрецию, усиливает

желчный пузырь

перистальтику, вызывает атонию

перистальтику, вызывает спазмы

Почки

Снижает диурез

Повышает диурез

Мочевой пузырь

Угнетает деятельность мускулатуры

Возбуждает деятельность мускулатуры

Скелетные мышцы Кожа Основной обмен

Физическая и

психическая

активность

пузыря, повышает тонус сфинктера Повышает тонус и обмен веществ

Суживает сосуды, вызывает бледность,

сухость кожи

Повышает уровень обмена

Повышает значения показателей

пузыря, понижает тонус сфинктера Понижает тонус и обмен веществ

Расширяет сосуды, вызывает покраснение,

потливость кожи

Понижает уровень обмена

Снижает значения показателей

Афферентная иннервация внутренних органов и сосудов осуществляется за счет нервных клеток чувствительных узлов черепных нервов, спинномозговых узлов, а также вегетативных узлов (I нейрон). Периферические отростки (дендриты) псевдоуниполярных клеток следуют в составе нервов к внутренним органам.

Центральные отростки вступают в составе чувствительных корешков в головной и спинной мозг. Тела II нейрона располагаются в спинном мозге - в ядрах задних рогов, в ядрах тонкого и клиновидного пучка в продолговатом мозге и чувствительных ядрах черепных нервов. Аксоны вторых нейронов направляются на противоположную сторону и в составе медиальной петли достигают ядер таламуса (III нейрон).

Отростки третьих нейронов заканчиваются на клетках коры головного мозга, где и происходит осознование болевых ощущений. Корковый конец анализатора расположен преимущественно в передней и задней центральных извилинах (IV нейрон).

Эфферентная иннервация различных внутренних органов неоднозначна. Органы, в состав которых входит гладкая непроизвольная мускулатура, а также органы, обладающие секреторной функцией, как правило, получают эфферентную иннервацию из обоих отделов вегетативной нервной системы: симпатического и парасимпатического, оказывающие на функцию органа противоположный эффект.

Возбуждение симпатического отдела вегетативной нервной системы вызывает учащение и усиление сердечных сокращений, повышение артериального давления и уровня глюкозы в крови, повышение выброса гормонов мозгового слоя надпочечников, расширение зрачков и просвета бронхов, снижение секреции желез (кроме потовых), угнетение перистальтики кишечника, вызывает спазм сфинктеров.

Возбуждение парасимпатического отдела вегетативной нервной системы снижает артериальное давление и уровень глюкозы в крови (повышает секрецию инсулина), урежает и ослабляет сокращения сердца, суживает зрачки и просвет бронхов, повышает секрецию желез, усиливает перистальтику и сокращает мускулатуру мочевого пузыря, расслабляет сфинктеры.

Адаптационно-трофическая функция симпатической нервной системы. Феномен Орбели-Гинецинского.

Проведя исследования функционального значения симпатической иннервации для скелетных мышц Орбели Л.А. было установлено, что в этом влиянии существует два неразрывно связанных компонента: адаптационный и трофический, лежвщий в основе адаптационного.

Адаптационный компонент направлен на приспособление органов к выполнению тех или иных функциональных нагрузок. Сдвиги наступают благодаря тому, что симпатические влияния оказывают на органы трофическое действие, которое выражается в изменении скорости протекания метаболических процессов.

Изучая влияние СНС на скелетную мышцу лягушки А.Г. Гинецинским было установлено, что если на мышцу утомленную до полной невозможности сокращаться подействовать стимуляцией симпатических волокон, а затем начать стимулировать ее через моторные нервы сокращения восстанавливались. Выяснилось что эти изменения связанны с тем, что под влиянием СНС в мышце происходит укорочение хроноксии, укорачивается время передачи возбуждения, повышается чувствительность к ацетилхолину, повышается потребление кислорода.

Эти влияния СНС распространяются не только на мышечную деятельность, но также относятся к работе рецепторов, синапсов, различных отделов ЦНС, ЖВС, протеканию безусловных и условных рефлексов.

Это явление носит название адаптационно-трофического влияния СНС на скелетную мускулатуру (феномен Орбели-Гинецинского).

18. Синаптический процесс в симпатических и парасимпатических ганглиях.

Синаптический процесс в симпатических и парасимпатических ганглиях.

19.Синаптическое взаимодействие постганглионарных волокон с клетками органов в симпатической нервной системе.

Синаптическое взаимодействие постганглионарных волокон с клетками органов в симпатической нервной системе.

Симпатические нервные волокна

Симпатические нервные волокна берут начало от специальных клеток грудного и поясничного отделов спинного мозга. Покинув спинной мозг, эти волокна оканчиваются в симпатических ганглиях (симпатические ганглии расположены вне иннервируемых органов). В ганглиях окончания указанных нервных волокон (их называют преганглионарными симпатическими волокнами) контактируют с нервными клетками (ганглионарные клетки). Аксоны ганглионарных клеток (постганглионарные симпатические волокна) выходят за пределы ганглиев и оканчиваются на клетках иннервируемых органов и тканей.

20.Синаптическое взаимодействие постганглионарных волокон с клетками органов в парасимпатической нервной системе.

Синаптическое взаимодействие постганглионарных волокон с клетками органов в парасимпатической нервной системе.

Парасимпатические нервные волокна берут начало от клеток стволовой части головного мозга, (например, волокна блуждающих нервов, иннервирующих многие внутренние органы) и от клеток крестцовой части спинного мозга. Эти волокна (преганглионарные парасимпатические волокна) оканчиваются в парасимпатических ганглиях, которые в отличие от симпатических ганглиев расположены обычно в толще иннервируемых органов. В парасимпатических ганглиях окончания преганглионарных волокон контактируют с ганглионарными нервными клетками. Аксоны ганглионарных клеток (постганглионарные парасимпатические волокна) оканчиваются на клетках иннервируемых органов.

Области влияния парасимпатической нервной системы на процессы в организме сравнительно ограничены. Эти влияния могут сказываться либо прямо на иннервируемые органы, как в кольцевой мускулатуре радужной оболочки глаза или в слюнных железах, либо через посредство метасимпатической нервной системы. В первом случае постганглионарный нейрон сам непосредственно контактирует с эффектором и вызываемое им действие зависит главным образом от прямых влияний структур ЦНС.

Во внутренних органах преганглионарное парасимпатическое волокно оканчивается не на эффекторе – мышечных волокнах или железистых клетках, а на интернейроне или эфферентном нейроне метасимпатической нервной системы, который представляет общий конечный путь для импульсов, поступающих по блуждающему и тазовому нервам. Здесь они вступают во взаимодействие с импульсами, посредством которых осуществляются процессы базовой внутриорганной местной метасимпатической регуляции.

Таким образом, парасимпатические влияния оказываются не прямыми, а опосредованными. Поэтому результат адекватного раздражения (в отличие от чрезмерной электрической стимуляции одновременно всех вагусных волокон) не бывает однозначным. Он зависит от текущих внутриорганных процессов. Тут могут возникать возбуждение или торможение функции органа, включаться или выключаться различные регуляторные влияния, направленные на поддержание нормальной деятельности, стабилизацию гомеостатического состояния.

21.Центры регуляции висцеральных функций. Метод определения исходного тонуса вегетативной нервной системы у человека по индексу Кердо. Метод исследования местного дермографизма у человека.

Центры регуляции висцеральных функций.

На уровне последнего шейного и двух первых грудных сегментов спинного мозга расположен спинно— цилиарный центр. Они иннервируют гладкие мышцы глазного яблока, мышцу, расширяющую зрачок. В первых пяти грудных сегментах спинного мозга локализованы преганглионарные симпатические нейроны, имеющие отношение к иннервации сердца и бронхов. В крестцовой части спинного мозга находятся парасимпатические нейроны, образующие в совокупности центры дефекации, мочеиспускания, половых рефлексов — эрекции, эмиссии и эякуляции.

Стволовые центры

Центры, находящиеся в стволе мозга (продолговатый мозг, мост, средний мозг), управляют висцеральными функциями посредством парасимпатических волокон, проходящих в составе блуждающего, языкоглоточного, лицевого и глазодвигательного нервов.

В продолговатом мозгу находятся нервные центры, с помощью которых осуществляются сложные рефлексы, такие как жевание, глотание, слюноотделение.

Здесь же расположены центры, тормозящие сердечную деятельность, и стимулирующие секрецию желудочных желез.

Рефлекторные процессы, происходящие в ядерных образованиях спинного продолговатого, среднего мозга и моста, находятся под постоянным влиянием гипоталамуса — высшего центра регуляции висцеральных функций.

Гипоталамические центры

Гипоталамус управляет всеми основными гомеостатическими функциями организма. Интегративная функция гипоталамуса обеспечивается автономными, соматическими и эндокринными механизмами. Он представляет собой скопление 32 пар ядер, которые условно разделяются на три группы: передние, средние и задние.

Эфферентные пути гипоталамуса связывают его с ретикулярной формацией ствола мозга, ядрами спинного мозга.

Нисходящие влияния гипоталамуса обеспечивают регуляцию функций через автономную нервную систему. Важным компонентом в осуществлении нисходящих влияний гипоталамуса являются и гормоны, гипофиза.

Лимбическая система

Лимбическая система это совокупность функционально связанных между собой образований древней коры (гиппокамп) , старой коры (поясная извилина) и подкорковых структур (миндалевидный комплекс, ряд ядер таламуса и гипоталамуса.

Наряду с управлением висцеральными функциями лимбическая система участвует в эмоциональном и инстинктивном (пищевом, половом, оборонительном) поведении.

Она оказывает также влияние на смену фаз сна и бодрствования.

Общие свойства нервных центров

Нервные центры представляют собой совокупность нейронов, расположенных в одной или нескольких структурах ЦНС и регулирующих определенную функцию организма.

Классификация центров:

1.Классификация по расположению

2.Классификация по функциональной роли

Принцип работы центров –рефлекторный.

Афферентный вход Центры суммируют входящую информацию

Нейронный ансамбль Информация видоизменяется благодаря взаимодействию нейронов

Эфферентная часть. Несколько мест

Общие принципы деятельности нервных центров.

1.Автоматия центров (спонтанная активность, обусловлена метаболизмом).

2.Тонус центров (обусловлен потоком импульсов от различных рецептивных полей, действием на нейроны биологически активных веществ и метаболитов).

Пластичность центров

Пластичность - способность объединяться в разные ансамбли и связываться с разными центрами. Пластичность обусловлена

1)способностью синапсов к тренировке (кальций, медиаторы, рецепторы),

2)морфологическими изменениями – синтез новых мембранных рецепторов, рост шипиков на дендритах.

3)Способность к временному доминированию.

Метод определения исходного тонуса вегетативной нервной системы у человека по индексу Кердо.

Цель оценить соотношение симпатических и парасимпатических влияний автономной (вегетативной) нервной системы у человека расчетным способом.

Ход работы:

1 этап: у исследуемого, находящегося в положении сидя, в состоянии функционального покоя трижды с интервалами не менее 2-х минут измеряют артериальное давление в плечевой артерии и частоту артериального пульса. Из полученных 3-х значений давления и пульса определяют среднее арифметическое число и вносят в протокол исследования.

2 этап: производят расчет величины вегетативного индекса (ВИ) по формуле: ВИ = (1 – диастолическое АД/частота пульса)۰ 100.

Трактовка результата: если ВИ = 0, то делают заключение, что у исследуемого имеется нормотония (сбалансированность влияний симпатического и парасимпатического отделов вегетативной нервной системы); положительное значение ВИ свидетельствует о преобладании симпатических влияний, отрицательное значение ВИ – о преобладании парасимпатических влияний.

Метод исследования местного дермографизма у человека.

Цель выявить тип активности автономной (вегетативной) нервной системы по изменению окраски кожи при механическом раздражении.

Ход работы: на кожу ладонной поверхности предплечья концом стеклянной палочки наносят с небольшим нажимом штриховое воздействие. Через 5-20 секунд на коже в месте раздражения появляется белая (белый дермографизм) или красная (красный дермографизм) полоска. Белый дермографизм свидетельствует о повышенной активности симпатического отдела автономной нервной системы. Яркий и длительно сохраняющийся красный дермографизм свидетельствует о повышенной активности парасимпатического отдела автономной нервной системы. Более убедительным признаком повышенной активности парасимпатического отдела считается возвышающийся дермографизм (белый отечный валик, окруженный красной полоской).

22. Принципы гормональной регуляции: прямая и обратная регуляторная связь.

Принципы гормональной регуляции: прямая и обратная регуляторная связь

Специфические регуляторы, которые секретируются эндокринными железами в кровь или лимфу, а затем попадают на клетки-мишени, называют гормонами.

Прямая

Функциональная активность эндокринной железы может регулироваться «субстратом», на который направлено действие гормона. Так, глюкоза стимулирует секрецию инсулина из β-клеток панкреатических островков (островки Лангерганса), а инсулин понижает концентрацию глюкозы в крови, активируя ее транспорт в мышцы и печень. Это происходит следующим образом. Глюкоза входит в β-клетки поджелудочной железы через переносчик глюкозы и сразу же фосфорилируется глюкокиназой, после чего вовлекается в гликолиз. Образующийся при этом АТФ ингибирует калиевые каналы, вследствие чего снижается мембранный потенциал β-клеток и активируются потенциалзависимые кальциевые каналы. Входящий в β-клетку кальций стимулирует слияние везикул, содержащих инсулин, с плазматической мембраной и секрецию инсулина. Инсулин активирует перенос глюкозы в печень, сердце и скелетные мышцы, вследствие чего уровень глюкозы в крови снижается, замедляется ее вход в β-клетки и уменьшается секреция инсулина (рис. 5.1).

Такой же механизм лежит в основе секреции паратгормона (паратиреоидный гормон, паратирин) и кальцитонина. Оба гормона влияют на концентрацию кальция и фосфатов в крови. Паратиреоидный гормон вызывает выход минеральных веществ из кости и стимулирует реабсорбцию кальция в почках и кишечнике, в результате чего возрастает концентрация кальция в плазме крови. Кальцитонин, напротив, стимулирует поступление кальция и фосфатов в костную ткань, в результате чего концентрация минеральных веществ в крови снижается. При высокой концентрации кальция в крови подавляется секреция паратиреоидного гормона и стимулируется

секреция кальцитонина. В случае снижения концентрации кальция в крови секреция паратиреоидного гормона усиливается, а кальцитонина — ослабляется.

Такая регуляция постоянства внутренней среды организма, происходящая по принципу отрицательной обратной связи, очень эффективна для поддержания гомеостаза, однако не может выполнять все задачи адаптации организма. Например, кора надпочечников продуцирует стероидные гормоны в ответ на голод, болезнь, эмоциональное возбуждение и т. п. Чтобы эндокринная система могла «отвечать» на свет, звуки, запахи, эмоции и т. д., должна существовать связь между эндокринными железами и нервной системой.

Основные связи между нервной и эндокринной системами регуляции осуществляются посредством взаимодействия гипоталамуса и гипофиза. Нервные импульсы, приходящие в гипоталамус, активируют секрецию так называемых рилизинг-факторов (либеринов и статинов): тиреолиберина, соматолиберина, пролактолиберина, гонадолиберина и кортиколиберина, а также соматостатина и пролактостатина. Мишенью для либеринов и статинов, секретируемых гипоталамусом, является гипофиз. Каждый из либеринов взаимодействует с определенной популяцией клеток гипофиза и вызывает в них синтез соответствующих тропинов: тиреотропина, соматотропного гормона (соматотропин — гормон роста), пролактина, гонадотропного гормона, (гонадотропины

— лютеинизирующий и фолликулостимулирующий), а также адренокортикотропного гормона (АКТГ, кортикотропин). Статины оказывают на гипофиз влияние, противоположное действию либеринов, — подавляют секрецию тропинов. Тропины, секретируемые гипофизом, поступают в общий кровоток и, попадая на соответствующие железы, активируют в них секреторные процессы.

Обратная

Регуляция деятельности гипофиза и гипоталамуса, кроме сигналов, идущих «сверху вниз», осуществляется гормонами «исполнительных» желез. Эти «обратные» сигналы поступают в гипоталамус и затем передаются в гипофиз, что приводит к изменению секреции соответствующих тропинов.

Обратные связи не только позволяют регулировать концентрацию гормонов в крови, но и участвуют в дифференцировке гипоталамуса в онтогенезе. Образование половых гормонов в женском организме происходит циклически, что объясняется циклической секрецией гонадотропных гормонов. Синтез этих гормонов контролируется гипоталамусом, образующим рилизинг-фактор этих тропинов (гонадолиберин).

В железах внутренней секреции иннервированы, как правило, только сосуды, а эндокринные клетки изменяют свою биосинтетическую и секреторную активность лишь под действием метаболитов, кофакторов и гормонов, причем не только гипофизарных. Так, ангиотензин II стимулирует синтез и секрецию альдостерона. Отметим также, что некоторые гормоны гипоталамуса и гипофиза могут образовываться не только в этих тканях.

Например, соматостатин (гормон гипоталамуса, ингибирующий образование и секрецию гормона роста) обнаружен также в поджелудочной железе, где он подавляет секрецию инсулина и глюкагона.

Большинство нервных и гуморальных путей регуляции сходится на уровне гипоталамуса и благодаря этому в организме образуется единая нейроэндокринная регуляторная система. К клеткам гипоталамуса подходят аксоны нейронов, расположенных в коре больших полушарий и подкорковых образованиях. Эти аксоны секретируют различные нейромедиаторы, оказывающие на секреторную активность гипоталамуса как активирующее, так и тормозное влияние. Поступающие из мозга нервные импульсы гипоталамус «превращает» в эндокринные стимулы, которые могут быть усилены или ослаблены в зависимости от гуморальных сигналов, поступающих в гипоталамус от желез и тканей, подчиненных ему.

Тропины, образующиеся в гипофизе, не только регулируют деятельность подчиненных желез, но и выполняют самостоятельные эндокринные функции. Например, пролактин оказывает лактогенное действие, а также тормозит процессы дифференцировки клеток, повышает чувствительность половых желез к гонадотропинам, стимулирует родительский инстинкт. Кортикотропин является не только стимулятором стероцдогенеза, но и активатором липолиза в жировой ткани, а также важнейшим участником процесса превращения в мозге кратковременной памяти в долговременную. Гормон роста может стимулировать активность иммунной системы, обмен липидов, Сахаров и т. д.

В задней доле гипофиза (нейрогипофиз) депонируются антидиуретический гормон (вазопрессин) и окситоцин (см. рис. 5.3). Первый вызывает задержку воды в организме и повышает тонус сосудов, второй стимулирует сокращение матки при родах и секрецию молока. Оба гормона синтезируются в гипоталамусе, затем транспортируются по аксонам в заднюю долю гипофиза, где депонируются и потом секретируются в кровь.

Характер процессов, протекающих в ЦНС, во многом определяется состоянием эндокринной регуляции. Так, андрогены и эстрогены формируют половой инстинкт, многие поведенческие реакции. Очевидно, что нейроны, точно так же как и другие клетки нашего организма, находятся под контролем гуморальной системы регуляции. Нервная система, эволюционно более поздняя, имеет как управляющие, так и подчиненные связи с эндокринной системой. Эти две регуляторные системы дополняют друг друга, образуют функционально единый механизм, что обеспечивает высокую эффективность нейрогуморальной регуляции, ставит ее во главе систем, согласующих все процессы жизнедеятельности в многоклеточном организме.

23. Особенности биосинтеза, секреции и транспорта гормонов разной химической природы.

Особенности биосиетеза гормонов разной химической природы

Белково-пептидные гормоны. В процессе образования белковых и пептидных гормонов в клетках эндокринных желез происходит образование полипептида, не обладающего гормональной активностью. Но такая молекула в своем составе имеет фрагмент(ы), содержащий(е) аминокислотную последовательность данного гормона. Такая белковая молекула называется пре-про-гормоном и имеет в своем составе (обычно на N-конце) структуру, которая называется лидерной или сигнальной последовательностью (пре-). Эта структура представлена гидрофобными радикалами и нужна для прохождения этой молекулы от рибосом через липидные слои мембран внутрь цистерн эндоплазматического ретикулума (ЭПР). При этом, во время перехода молекулы через мембрану в результате ограниченного протеолиза лидерная (пре-) последовательность отщепляется и внутри ЭПР оказывается прогормон. Затем через систему ЭПР прогормон транспортируется в комплекс Гольджи и здесь заканчивается созревание гормона. Вновь в результате гидролиза под действием специфических протеиназ отщепляется оставшийся (N-концевой) фрагмент (про-участок). Образованная молекула гормона, обладающая специфической биологической активностью поступает в секреторные пузырьки и накапливается до момента секреции.

При синтезе гормонов из числа сложных белков гликопротеинов (например, фолликулостимулирующего (ФСГ) или тиреотропного (ТТГ) гормонов гипофиза) в процессе созревания происходит включение углеводного компонента в структуру гормона.

Производные аминокислот. Из тирозина синтезируются гормоны мозгового слоя надпочечников адреналин и норадреналин, а также йодсодержащие гормоны щитовидной железы. В ходе синтеза адреналина и норадреналина тирозин подвергается гидроксилированию, декарбоксилированию и метилированию с участием активной формы аминокислоты метионина.

В щитовидной железе происходит синтез йодсодержащих гормонов трийодтиронина и тироксина (тетрайодтиронина). В ходе синтеза происходит йодирование фенольной группы тирозина. Из остатков тирозина образуются моно- и ди-иодтирозин. Из них примерно 30 % остатков в результате конденсации могут превратитьться в три- и тетраиодтиронины. Конденсация и иодирование идут с участием одного и того же фермента — тиреопероксидазы. Дальнейшее созревание гормонов щитовидной железы происходит в железистых клетках — ТГ поглощается клетками путем эндоцитоза и образуется вторичная лизосома в результате слияния лизосомы с поглощенным белком ТГ.

Протеолитические ферменты лизосом обеспечивают гидролиз ТГ и образование Т3 и Т4, которые выделяются во внеклеточное пространство. А моно- и дииодтирозин деиодируются с помощью специального фермента деиодиназы и иод повторно может подвергаться органификации. Для синтеза тиреоидных гормонов характерным является механизм торможения секреции по типу отрицательной обратной связи (Т3 и Т4 угнетают выделение ТТГ).

Стероидные гормоны. В эту группу входят тестостерон, эстрадиол, эстрон, прогестерон, кортизол, альдостерон и др. Эти гормоны образуются из холестерина в корковом веществе надпочечников (кортикостероиды), а также в семенниках и яичниках (половые стероиды). Свободный холестерин поступает в митохондрии, где превращается в прегненолон, который затем попадает в эндоплазматическую сеть и после этого — в цитоплазму.

Особенности секреции и транспорта гормонов разной химической природы.

Секреция

Процессы секреции гормонов тесно сопряжены с процессами их биосинтеза. Степень их сопряженности зависит от химической природы гормона и особенностями механизмов его секреции. Подразделяют:

1)Освобождение гормонов из клеточных секреторных гранул (секреция белково-пептидных гормонов и катехоламинов )

2)Освобождение гормонов из белковосвязанной формы ( секреция тиреоидных гормонов )

3)Относительно свободная диффузия гормонов через клеточные мембраны ( стероидные гормоны )

Транспорт

Гормоны, имеющие гидрофильную природу (катехоламины, серотонин, белково-пептидные и др.), синтезируются «впрок» и выделяются в кровь определенными порциями за счет опустошения секреторных везикул. Уровень этих гормонов в крови возрастает при увеличении частоты выброса гормона из клеток эндокринной железы. В отличие от этого стероидные и тиреоидине гормоны, а также эйкозаноиды не накапливаются в специальных структурах клетки, а благодаря своей липофильности свободно проходят через плазматическую мембрану эндокринной клетки и попадают в кровь. Содержание этих гормонов в крови регулируется ускорением или замедлением их синтеза.

Поступая в кровь, гормоны связываются с белками плазмы. Обычно лишь 5—10% молекул гормонов находится в крови в свободном состоянии, и только они могут взаимодействовать с рецепторами. К числу специфических гормонсвязывающих белков относятся транскортин, связывающий кортикостероиды, тестостеронэстрогенсвязывающий глобулин, тироксинсвязывающий глобулин и т. д. Альдостерон, по-видимому, не имеет специфических «транспортных» белков, поэтому находится преимущественно в связи с альбумином

24. Виды и пути действия гормонов на клетки-мишени.

Виды действия гормонов на клетки-мишени

Различают пять видов действия гормонов на ткани-мишени: метаболическое, мор-фогенетическое, кинетическое, корригирующее и реактогенное.

Метаболическое действие гормонов — вызывает изменение обмена веществ в тканях. Оно происходит за счет трех основных гормональных влияний. Во-первых, гормоны меняют проницаемость мембран клетки и органоидов, что изменяет условия мембранного транспорта субстратов, ферментов, ионов и метаболитов и, соответственно, все виды метаболизма. Во-вторых, гормоны меняют активность ферментов в клетке, приводя к изменению их структуры и конфигурации, облегчая связи с кофакторами, уменьшая или увеличивая интенсивность распада ферментных молекул, стимулируя или подавляя активацию проферментов. В-третьих, гормоны изменяют синтез ферментов, индуцируя или подавляя их образование за счет влияния на генетический аппарат ядра клетки, как прямо вмешиваясь в процессы синтеза нуклеиновых кислот и белка, так и опосредованно через энергетическое и субстратноферментное обеспечение этих процессов. Сдвиги метаболизма, вызываемые гормонами, лежат в основе изменения функции клеток, ткани или органа. Морфогенетическое действие — влияние гормонов на процессы формообразования, дифференцировки и роста структурных элементов. Осуществляются эти процессы за счет изменений генетического аппарата клетки и обмена веществ. Примерами может служить влияние соматотропина на рост тела и внутренних органов, половых гормонов — на развитие вторичных половых признаков.

Кинетическое действие — способность гормонов запускать деятельность эффектора, включать реализацию определенной функции. Например, окситоцин вызывает сокращение мускулатуры матки, адреналин запускает распад гликогена в печени и выход глюкозы в кровь, вазопрессин включает обратное всасывание воды в собирательных трубочках нефрона, без него не происходящее.

Корригирующее действие — изменение деятельности органов или процессов, которые происходят и в отсутствие гормона. Примером корригирующего действия гормонов является влияние адреналина на частоту сердечных сокращений, активация окислительных процессов тироксином, уменьшение обратного всасывания ионов калия в почках под влиянием альдостерона. Разновидностью корригирующего действия является нормализующий эффект гормонов, когда их влияние направлено на восстановление измененного или даже нарушенного процесса. Например, при исходном превалировании анаболических процессов белкового обмена глюкокортикоиды вызывают катаболический эффект, но если исходно преобладает распад белков, глюкокортикоиды стимулируют их синтез.

В более широком плане зависимость величины и направленности эффекта гормона от имеющихся перед его действием особенностей метаболизма или функции определяется правилом исходного состояния, описанном в начале главы. Правило исходного состояния показывает, что гормональный эффект зависит не только от количества и свойств молекул гормона, но и от реактивности эффектора, определяемой числом и свойствами мембранных рецепторов к гормону. Реактивностью в рассматриваемом контексте называют способность эффектора реагировать определенной величиной и направленностью ответа на действие конкретного химического регулятора.

Реактогенное действие гормонов — способность гормона менять реактивность ткани к действию того же гормона, других гормонов или медиаторов нервных импульсов. Так, например, кальцийрегули-рующие гормоны снижают чувствительность дистальных отделов нефрона к действию вазопрессина, фолликулин усиливает

действие прогестерона на слизистую оболочку матки, тиреоидные гормоны усиливают эффекты катехоламинов. Разновидностью реактогенного действия гормонов являетсяпермиссивное действие, означающее способность одного гормона давать возможность реализоваться эффекту другого гормона. Так, например, глюкокортикоиды обладают пермиссивным действием по отношению к катехоламинам, т.е. для реализации эффектов адреналина необходимо присутствие малых количеств кортизола, инсулин обладает пермиссивным действием для соматотропина (гормона роста) и др. Особенностью гормональной регуляции является то, что реактогенное действие гормоны могут реализовать не только в тканях — мишенях, где концентрация рецепторов к ним высока, но и в других тканях и органах, имеющих единичные рецепторы к гормону.

Пути действия гормонов на клетки-мишени.

Пути действия гормонов рассматриваются в виде двух альтернативных возможностей: 1) действия гормона с поверхности клеточной мембраны после связывания со специфическим мембранным рецептором и запуска тем самым цепочки биохимических превращений в мембране и цитоплазме (эффекты пептидных гормонов и катехола-минов); 2) действия гормона путем проникновения через мембрану и связывания с рецептором цитоплазмы, после чего гормон-рецеп-торный комплекс проникает в ядро и органоиды клетки, где и реализует свой регуляторный эффект (стероидные Гормоны, гормоны щитовидной железы). Считается, что функция распознавания предназначенного определенным клеткам специфического гормонального сигнала у всех клеток для всех гормонов осуществляется мембранным рецептором, а после связывания гормона с соответствующим ему рецептором, дальнейшая роль гормонрецепторного комплекса для пептидных и стероидных гормонов различна.

25. Молекулярные механизмы действия гормонов разной химической природы на клетки-мишени.

Механизм действия гормонов

Различают следующие типы механизма действия гормонов: мембранный, мембранно-внутриклеточный и внутриклеточный (цитозольный).

Мембранный механизм. Гормон связывается с клеточной мембраной и в месте связывания изменяет её проницаемость для глюкозы, аминокислот и некоторых ионов. В этом случае гормон выступает как эффектор транспортных средств мембраны. Такое действие оказывает инсулин, изменяя транспорт глюкозы. Но этот тип транспорта гормонов редко встречается в изолированном виде. Инсулин, например, обладает как мембранным, так и мембранно-внутриклеточным механизмом действия.

Мембранно-внутриклеточный механизм.

Наиболее часто встречается при реализации биологических эффектов гормонов белково-пептидной природы и производных аминокислот. После образования гормон-рецепторного комплекса, внутри клетки запускается либо процесс биосинтеза вторичных посредников, либо активация уже имеющихся.

Вторичные посредники – это сигнальные молекулы, которые являются компонентами каскадов передачи сигналов. Наиболее распространенные: цАМФ, цГМФ, ионы кальция, инозитол-1,4,5-трифосфат, диацилглицерол, монооксид азота.

Внутриклеточный (цитозольный) механизм действия. Он характерен для стероидных гармонов

(кортикостероидов, половых гормонов – андрогенов, эстрогенов и гестагенов). Стероидные гормоны взаимодействуют с рецепторами, находящимися в цитоплазме. Образовавшийся гормон-рецепторный комплекс переносится в ядро и действует непосредственно на геном, стимулируя или угнетая его активность, т.е. действует на синтез ДНК, изменяя скорость транскрипции и количество инфармационной (матричной) РНК (мРНК). Увеличение или уменьшение количества мРНК влияет на синтез белка в процессе трансляции, что приводит к изменению функциональной активности клетки.

26.Нейросекреторная функция гипоталамуса. Рилизинг-факторы, их характеристика. Гипоталамогипофизарные связи.

Нейросекреторная функция гипоталламуса

Многочисленные исследования показали важную роль нейросекреторных клеток гипоталамуса в регуляции функций внутренних органов. Эта регуляция может осуществляться либо прямым путем, либо посредством желез внутренней секреции.

Особое значение нейросекреторные элементы имеют в осуществлении защитных и приспособительных реакций организма.