
Курс лекций (Доркина) - микробиология
.pdfд) быть стерильными для получения чистой культуры; е) содержать достаточное количество Н2О, т.к. бактерии питаются по законам
осмоса и диффузии; ж) обладать определенным окислительно-восстановительным потенциалом, для
аэробов rH2 – не ниже 10; для анаэробов – не выше 5; з) быть прозрачными;
Классификация питательных сред.
По консистенции среды делят на:
а) жидкие: пептонная вода (ПВ), мясопептонный бульон (МПБ); б) полужидкие: полужидкий мясопептонный агар (МПА) и др.;
в) плотные или твердые: МПА, мясопептонный желатин, свернутая сыворотка; г) сыпучие: разваренное пшено, кварцевый песок; д) сухие – гигроскопические порошки, выпускаемые промышленностью;
Для уплотнения сред используют агар, желатин или селикагель. Агар – полисахарид, выделенный из морских водорослей. Он образует в воде гели, которые плавятся при температуре 100 С и застывают при 45 С. К полужидким средам агар добавляют в количестве 0,5% (0,3-0,7%), к плотным – 1,5-2%.
По составу среды делят на:
а) естественные – натуральные продукты (яйца, овощи), животные ткани, желчь, сыворотка крови;
б) искусственные – среды, приготовленные из различных настоев или отваров с добавлением неорганических солей, углеводов, азотистых веществ;
в) синтетические – среды, приготовленные из определенных химических соединений в точно указанных концентрациях.
По назначению среды делят на:
а) основные (простые) – используют для культивирования многих видов микроорганизмов: ПВ, МПБ, МПА; на простых средах хорошо растут прототрофные бактерии; простые среды служат основой для приготовления ряда сложных питательных сред;
б) специальные (сложные) - используют для тех микроорганизмов, которые не растут на простых средах: сахарный МПБ, сахарный МПА, сывороточный МПБ и МПА, кровяной МПА, асцитический МПБ;
в) элективные (избирательные) – используют для определенных видов; создаются оптимальные условия для этих видов, а другие виды не растут или растут плохо: щелочная ПВ (для холерного вибриона), среда Сабуро (для грибов), желточно-солевой агар (для стафилококка), сывороточные среды – среда Ру и среда Леффлера (для дифтерийных коринебактерий), среда Китта-Тароцци (для анаэробов), среды с желчью (для тифо-паратифозных бактерий), среды с глицерином (для микобактерий туберкулеза);
г) дифференциально-диагностические среды используют для изучения биохимических свойств и дифференцировки (отличия) одного вида микроорганизмов от другого по его ферментативным свойствам: среды Эндо, Левина, Плоскирева, среды
Гисса. Состав сред подбирается так, чтобы |
выявить характерные отличия |
ферментативных свойств одного вида от другого. |
|
Среда Эндо состоит из МПА, 1 % лактозы, фуксина и сульфита натрия, который его обесцвечивает, исходная среда имеет светло-розовый цвет.
Среда Левина состоит из МПА, лактозы, эозина, метиленовой сини и фосфорнокислого натрия, исходная среда имеет красно-фиолетовый цвет.
Среда Плоскирева состоит из МПА, лактозы, бриллиантового зеленого, йода, нейтрального красного, солей желчных кислот, минеральных солей. Эта среда также является элективной, т.к. подавляет рост многих микробов (кишечной палочки и др.) и способствует лучшему росту некоторых болезнетворных бактерий (возбудителей брюшного тифа, паратифов).

Эти среды используются для идентификации бактерий семейства Enterobacteriaceae. Они позволяют отличить патогенные микроорганизмы от кишечной палочки (см. лекцию №5)..
Среды Гисса служат для изучения сахаролитических свойствах микробов (см. лекцию №5
Методы создания бескислородных условий для культивирование анаэробов.
Для создания бескислородных условий используются физические, химические и биологические методы.
Физические методы:
1)посев в глубину плотных питательных сред (кровяной или сахарный агар): а)посев уколом в высокий столбик агара (анаэробы вырастают в глубине посева); б) посев в
трубках Виньяля-Вейона;
2)выращивание на специальных средах: на среде Китта-Тароцци (жидкая питательная среда - 0,5 % глюкоза, кусочки животных тканей, например, печени, которая связывает кислород). Перед посевом среду кипятят и быстро охлаждают. После посева заливают слоем стерильного вазелинового масла.
в) выращивание в анаэростатах – специальный сосуд, из которого удален кислород.
Анаэростат – толстостенный металлический цилиндр с хорошо притертой крышкой с резиновой прокладкой. В него ставят чашки Петри (крышкой вверх) с посевами и удаляют воздух или вытесняют инертным газом.
Химические методы - поглощение кислорода воздуха в герметически закрытом сосуде (аппарате Аристовского) химическими веществами (такими как щелочной пирогаллол или гидросульфит натрия).
Биологические методы (метод Фортнера) - совместное выращивание анаэробов и аэробов. После посева чашки Петри герметически закрывают пластилином или парафином. Вначале в чашке Петри размножаются аэробы, а когда весь кислород используется, начинают расти анаэробы.
Выделение чистой культуры аэробных и анаэробных бактерий.
Чистая культура микроорганизмов – это популяция клеток (видимый рост) одного вида, выросшая на стерильной питательной среде.
Выделение чистой культуры – бактериологический метод. Этот метод является основным методом диагностики бактериальных инфекций.
Для получения чистой культуры необходимо отделить бактериальные клетки разных видов друг от друга. Чаще всего используются механические способы отделения клеток–
специальные методы посева:
а) посев шпателем по Дригальскому в три чашки Петри; на третьей чашке вырастают отдельные колонии; каждая колония – один вид, т.к. колония – потомство одной клетки;
б) посев петлей "штрихами" или "сеткой": делают посев прерывистыми штрихами;
втом месте, где на агар попало большое количество микробных клеток, рост будет в виде сплошного штриха, а на штрихах с небольшим количеством клеток вырастут отдельные колонии;
Таким образом, при помощи специальных методов посева получают изолированные колонии разных видов бактерий.
Выделение чистой культуры проводят в три этапа: Первый этап (1-ый день):
а) из материала (смесь бактерий разных видов) готовят мазок, окрашивают по Граму и микроскопируют;
б) делают посев материала (смеси бактерий) на чашку Петри с МПА штриховым
методом или по методу Дригальского и ставят в термостат при 37С на 24-48 часов. Второй этап (2-ой день):
а) наблюдают посевы и проводят описание колоний разных видов (размер, форма, цвет, поверхность, форма края, структура, консистенция);
б) из колоний готовят мазки и окрашивают по Граму (колония должна содержать один вид бактерий);
в) делают пересев разных колоний в разные пробирки со скошенным МПА для накопления чистой культуры; выращивают в термостате при 37С 24 часа.
Третий этап (3-ий день): проделывают работу по идентификации (определение вида) культуры и проверяют чистоту культуры. Для определения вида изучают
морфологические, культуральные, тинкториальные и биохимические свойства:
а) отмечают характер роста выделенной чистой культуры на МПА (визуально она характеризуется однородным ростом);
б) готовят мазок, окрашивают по Граму и микроскопируют; если культура чистая, то обнаруживают одинаковые морфологические и тинкториальные клетки;
в) делают посев на среды Гисса и МПБ для изучения сахаролитических и протеолитических свойств чистой культуры; оставляют в термостате при 37 С на 24 часа.
По совокупности морфологических, тинкториальных, культуральных и биохимических свойств делают вывод о видовой принадлежности выделенной чистой культуры бактерий. При необходимости изучают и другие признаки (факторы вирулентности, антигенную структуру, чувствительность к фагам и др.).
В бактериологической практике установление вида возбудителя позволяет поставить диагноз заболевания, поэтому выделение и идентификация чистой культуры - это и естьбактериологический метод диагностики инфекционных заболеваний. Постановка этого метода обязательно включает и определение чувствительности выделенной чистой культуры возбудителя к антибиотикам (определение антибиотикограммы).
Выделение чистой культуры анаэробных бактерий также осуществляется в три этапа. При этом также получают чистую культуру из одной клетки и добиваются роста микроорганизмов в виде изолированных колоний с последующим ее пересевом и идентификацией.
Особенностью работы по выделению чистой культуры анаэробов является применение различных методов создания бескислородных условий (см. выше).
Три этапа:
Первый день. Делают посев (земля, гной) на среду Китта-Тароцци.
Второй день: для получения колоний делают пересев со среды Китта-Тароцци по методу Цейсслера, методу Вейнберга и методу Перетца.
Третий день: колонии пересевают в пробирку с новой средой Китта-Тароцци для накопления чистой культуры; проводят идентификацию чистой культуры анаэробов по морфологическим, культуральным, тинкториальным, биохимическим и антигенным свойствам.
Посев по методу Цейсслера. Каплю (петлю) материала со среды Китта-Тароцци последовательно засевают в три чашки Петри с кровяным агаром. Посевы ставят в анаэростат или аппарат Аристовского, которые ставят в термостат. На следующий день на третьей чашке вырастают отдельные колонии. Делают пересев этих колоний на среду Китта-Тароцци для накопления чистой культуры, изучения ее свойств и точного определения вида микроорганизмов.
Посев по методу Вейнберга. Пастеровской пипеткой переносят материал со среды Китта-Тароцци последовательно в 3-5 узких пробирок с сахарным МПА, погружая пипетку в расплавленный агар до самого дна пробирки. Пробирки быстро охлаждают под холодной водой. Агар застывает и разобщает микробные клетки в глубине агара. Из этих клеток вырастают колонии, которые пересевают в новую среду Китта-Тароцци, накапливают чистую культуру и идентифицируют.

Культивирование вирусов.
Вирусы – облигатные внутриклеточные паразиты. Они размножаются в живых клетках и не растут на искусственных питательных средах, поэтому методы культивирования вирусов отличаются от методов культивирования бактерий.
Методы культивирования.
1.На лабораторных животных. Заражают животных (подкожно,
внутримышечно, внутрибрюшино), которые чувствительны к определенным вирусам: хорьков - вирусом гриппа, кроликов - вирусом бешенства, обезьян - вирусом полиомиелита. Индикация (обнаружение) вируса проводится по признакам заболевания. Недостаток метода - не все вирусы можно культивировать на животных, например, животные невосприимчивы к вирусам человека.
2.В куриных эмбрионах. Заражают куриный эмбрион (аллонтоисная полость,
хорион-аллонтоисная оболочка, амниотическая полость, желточный мешок, сам эмбрион). Куриный эмбрион – очень удобен. Он защищен от попадания других микробов (стерильный), техника работы с ним проста, можно накопить большое количество вирусов. Индикация: а) по специфическим поражениям на хорион-аллантоисной оболочке, по гибели эмбриона, б) по реакции склеивания эритроцитов – реакции гемагглютинации (РГА). Недостатки метода: а)не все вирусы (вирус полиомиелита, вирус ящура) можно вырастить в куриных эмбрионах; б) невозможно обнаружить микроб без вскрытия эмбриона; в) в нем много загрязняющих белков и других соединений.
3.В тканевых культурах. Тканевые культуры или клеточные культуры – клетки, выращенные вне организма на искусственных питательных средах. Для их приготовления используют чаще всего эмбриональные и опухолевые ткани. Метод тканевых культур разработан Дж. Эндерсом в 50-е годы. Большинство вирусов способно размножаться в культурах клеток. Для каждого вируса можно подобрать наиболее чувствительную культуру клеток.
Бывают культуры растущих тканей и переживающих тканей (утративших способность к росту).
Существуют три типа растущих тканевых культур:
а) однослойные тканевые культуры – клетки прикрепляются и растут в виде сплошного монослоя по поверхности стекла лабораторной посуды;
б) культуры суспензированных клеток – клетки растут и размножаются во взвешенном состоянии;
в) органные культуры - кусочки органов животных и человека, выращиваемые вне организма.
Однослойные культуры – основные культуры. Различают: а) первичные – клетки этой культуры делятся один раз, поэтому каждый раз необходимо вновь получать культуру ткани; чаще всего используют эмбриональные ткани и опухолевые ткани взрослого человека;
б) полуперевиваемые – клетки делятся до 50 раз, сохраняя диплоидный набор хромосом; их можно перевивать несколько раз; используют диплоидные клетки человека (фибробласты человеческого эмбриона, диплоидные клетки легких человека);
в) перевиваемые – клетки культуры постоянно делятся в условиях in vitro (вне организма), поэтому их можно перевивать непрерывно; их готовят из линий клеток, которые хорошо размножаются в течение многих лет; чаще всего эти культуры получают из опухолевых клеток. Получено около 200 штаммов таких клеток: штамм L (из культуры мышиных фибробластов), штамм HeLa (из карциномы шейки матки), штамм Hep-3 (из лимфоидной карциномы) и т.д.
Первичные и перевиваемые линии клеточных культур могут быть загрязнены неизвестными вирусами, в том числе онкогенными, это ограничивает их применение, особенно в производстве вакцин.
Все работы с культурами клеток требуют строжайшего соблюдения правил
асептики. К культуре клеток добавляют антибиотики против бактериального загрязнения.
Способы обнаружения (индикации) вирусов в тканевой культуре.
Вирусы можно обнаружить следующим образом.
1. По цитопатическому действию (ЦПД). В результате размножения вирусов в клетках происходят морфологические изменения клеток (вакуолизация цитоплазмы, деструкция митохондрий, округление клеток). Часть клеток погибает и отслаивается от стекла. Вместо сплошного монослоя остаются отдельные клеточные островки. ЦПД обнаруживают под микроскопом ( 8). По ЦПД можно не только обнаружить, но и идентифицировать вирусы. Например, вирус полиомиелита вызывает мелкозернистую деструкцию клеток; аденовирусы вызывают образование скоплений клеток в виде виноградных гроздьев; вирус кори вызывает образование симпластов – многоядерных клеток.
2.По образованию включений. Включения - скопления вирусов в клетках. Они имеют различную форму и размеры. Их окрашивают по Романовскому-Гимзе или флюорохромами и наблюдают под микроскопом.
3.По гемадсорбции. Клетки, зараженные вирусами, могут адсорбировать эритроциты. Вирусы выходят на поверхность клеток и связывают эритроциты. Эритроциты добавляют к культуре и через некоторое время промывают физиологическим раствором. На поверхности клеток под микроскопом видны прилипшие эритроциты в виде разнообразных фигур;.
4.По реакция гемагглютинации. Гемагглютинация - склеивание эритроцитов под влиянием вирусов. Эритроциты добавляют к культуральной жидкости. Если в ней есть вирусы, то эритроциты склеиваются.
5.По "цветной" реакции. Клетки культуры выращиваются на жидкой среде с индикатором (метиленовым красным). Индикатор изменяет цвет (с красного на желтый) под действием кислых продуктов метаболизма при росте нормальных клеток. Если клетки заражены вирусом, то нормальный метаболизм нарушается, кислые продукты не образуются и индикатор не изменяет цвет. Таким образом, признаком размножения вирусов в клетках культуры является сохранение красного цвета среды.
Особенности культивирования риккетсий и хламидий.
Риккетсии и хламидии – бактерии, которые, как и вирусы, являются облигатными внутриклеточными паразитами. Поэтому для их культивирования применяются: а)
тканевые культуры (описаны выше); б) куриные эмбрионы; в) лабораторные животные.
Культивирование риккетсий проводят на переживающих тканях в жидкой среде Мейтлендов (раствор Тироде и сыворотка) при 37 С 10-14 дней или на Тиродесывороточном агаре с добавлением на поверхность измельченной эпителиальной ткани
при 37 С 6-10 дней. |
|
Широко используется |
культивирование в 8-12-дневном курином эмбрионе. |
Эмбрион заражают в полость желточного мешка или на хорион-аллантоисную оболочку. Зараженные яйца помещают в термостат при 37 С на 6-7 дней. Этот метод используется при изготовлении вакцин и диагностических препаратов из риккетсий.
Риккетсии культивируют в организме белых мышей, которых заражают интраназально. В легких мышей накапливается большое количество риккетсий.
Риккетсии выращивают по методу Вейгля и Мосинга. Для этого платяных вшей заражают взвесью риккетсий путем введения в кишку через анальное отверстие с помощью специальных капилляров. Пшеничнов и Райхер разработали метод культивирования риккетсий на личинках вшей, которых кормят дефибринированной кровью с риккетсиями через мембрану кожи трупа.
ЛЕКЦИЯ № 7
Микрофлора почвы, воды, воздуха. Санитарно-показательные микроорганизмы. Методы санитарно-бактериологических исследований почвы, воды, воздуха.
Микроорганизмы широко распространены в природе: в воздухе, воде, почве, на предметах, в организме растений, животных и человека.
Из организма человека и животных в окружающую среду (в почву, воду, воздух и др.) попадают условно-патогенные и патогенные микроорганизмы. Попадают, в основном, 2-мя путями: 1) фекальный (с испражнениями из кишечника); 2) воздушно-
капельный (с капельками слизи из дыхательных путей).
Загрязнение окружающей среды патогенными микроорганизмами делает ее фактором передачи инфекционных заболеваний.
Для определения в окружающей среде микроорганизмов, которые отрицательно влияют на здоровье человека, проводится санитарно-бактериологическое исследование
почвы, воды, воздуха.
Методы исследования разрабатывает санитарная микробиология.
Определение в объектах среды патогенных микроорганизмов затруднительно,
т.к. они находятся в среде временно, в небольшом количестве, а методы их определения длительные и трудоемкие.
Поэтому для оценки санитарного состояния среды применяют: 1) определение общей микробной загрязненности; 2) определение санитарно-показательных микроорганизмов.
Санитарно-показательные микроорганизмы – представители нормальной микрофлоры кишечника и дыхательных путей человека и теплокровных животных.
Эти микроорганизмы обладают следующими свойствами:
1)выделяются в среду теми же путями, что и патогенные микробы (с испражнениями из кишечника и с капельками слизи из дыхательных путей);
2)сохраняются в среде те же сроки, что и патогенные микробы;
3)живут только в организме человека или животных и не имеют других мест обитания;
4)не размножаются в среде, поэтому их количество постоянно некоторое время после попадания в среду;
5)методы их определения легкие и доступные (их содержание можно оценить количественно);
6)обладают стабильными и типичными свойствами, поэтому их легко отличить от других видов.
Таким образом, санитарно-показательные микроорганизмы свидетельствуют о загрязненности окружающей среды выделениями (испражнениями, мокротой и пр.) человека и животных.
Если в объектах среды повышается количество санитарно-показательных микробов, то повышается вероятность присутствия в них патогенных и условнопатогенных микробов.
Для разных объектов окружающей среды выбраны определенные санитарно-
показательные микробы.
Микрофлора почвы.
Впочве обитает очень много микроорганизмов, т.к. в почве имеются благоприятные условия для их жизнедеятельности (питательные вещества, вода, защищённость от солнечных лучей).
Впочве обитают бактерии, грибы, лишайники, простейшие, бактериофаги, водоросли, вирусы. Почвенные бактерии: а) аммонифицирующие бактерии, которые
разлагают белки (p. Pseudomonas, p. Proteus, p. Bacillus); б) азотфиксирующие бактерии (p. Azotobacter, Azomonas, Mycobacter); в) нитрифицирующие (p. Thiobacillus); г)
клубеньковые (p. Rhizobium); д) серо- и железобактерии.
Состав микрофлоры почвы зависит от плодородия почвы, рН, температуры, освещения, количества влаги, способов обработки почвы, времени года и других факторов. Больше всего микроорганизмов находится в культурной почве, на юге, летом, на глубине 10-20 см.
Вместе с испражнениями, мочой, с отбросами и трупами животных и человека в
почву попадают представители нормальной микрофлоры человека и животных, патогенные и условно-патогенные микробы: кишечная палочка, Str. faecalis,
возбудители брюшного тифа, сальмонеллёзов, дизентерии, возбудители холеры, клостридии газовой гангрены (C. Perfringens)..
В почве они через некоторое время погибают по различным причинам (недостаток питательных веществ, высыхания, действия света). Основная причина - антагонизм постоянных обитателей почвы (бактерий, актиномицетов, грибов).
Но некоторое время они сохраняются в почве. Сроки выживания – от нескольких дней до нескольких месяцев. Долго сохраняются в почве споры. Споры возбудителя сибирской язвы (Bac. anthracis), столбняка (Clostridium tetani), ботулизма (C. botulinum),
газовой гангрены (C. perfringens и т.д.) сохраняются в почве в течение нескольких лет.
Таким образом, почва является фактором передачи инфекционных заболеваний. В связи с этим проводят санитарно-бактериологический контроль состояния почвы.
Оценка санитарного состояния почвы.
Критерии санитарного состояния почвы.
1.ОБЩАЯ МИКРОБНАЯ ЗАГРЯЗНЕННОСТЬ ПОЧВЫ.
2.КОЛИЧЕСТВО САНИТАРНО-ПОКАЗАТЕЛЬНЫХ МИКРООРГАНИЗМОВ
ПОЧВЫ.
Санитарно-показательными микроорганизмами почвы являются:
а) E. сoli (а также бактерии группы кишечной палочки (БГКП) - p. Citrobacter, p. Enterobacter, p. Klebsiella);
б) Str. faecalis; в) C. perfringens.
Эти бактерии имеют общий путь выведения с возбудителями кишечных инфекций (с фекалиями) и служат показателями фекальной загрязнённости почвы.
Показатели санитарного состояния почвы.
1.ОБЩЕЕ МИКРОБНОЕ ЧИСЛО (ОМЧ) ПОЧВЫ - общее количество микроорганизмов в 1 г почвы.
2.КОЛИ-ТИТР ПОЧВЫ, ПЕРФРИНГЕНС-ТИТР ПОЧВЫ и др. (оценивают количество санитарно-показательных микробов почвы).
КОЛИ-ТИТР ПОЧВЫ – наименьшее количество почвы в граммах, в котором определяется хоть одна жизнеспособная клетка кишечной палочки – E.coli.
ПЕРФРИНГЕНС-ТИТР ПОЧВЫ - наименьшее количество почвы в граммах, в котором определяется хоть одна жизнеспособная клетка возбудителя газовой гангрены -
C. perfringens.
Методы определения.
1. Определение ОМЧ почвы: а) посев 10-кратных разведений почвы (1:10, 1:100 и
т.д.) в чашки Петри на МПА (для бактерий) и на сусло-агар или среду Сабуро (для грибов); посев можно делать в глубину (1 мл) или на поверхность (0,1 мл) среды; б) инкубация посевов (48 час) при 24С для грибов и при 37С для бактерий; в) подсчет числа колоний для каждого разведения; в) расчет микробного числа почвы (с учетом навески почвы, разведения, объема посева), зная, что 1 колония – это 1 клетка.
2. Определение коли-титра почвы: а) посев 10-кратных разведений почвы на жидкую среду Кесслера (содержит желчь, лактозу, пептон, генциановый фиолетовый,

который подавляет рост многих микробов, кроме кишечной палочки); б) инкубация при 37С, 24 часа; в) пересев положительных проб (образование газа и диффузное помутнение) на среду Эндо и инкубация при 37С, 24 часа; г) на среде Эндо E. coli образует тёмно-красные колонии с металлическим блеском; проводят микроскопическое подтверждение колоний E. coli (из подозрительной колонии готовят мазок, окрашивают по Граму и микроскопируют; под микроскопом видны мелкие грам"-" палочки); г) расчет коли-титра (с учетом разведения и навески почвы определяют количество почвы в граммах, в котором обнаружена клетка кишечной палочки).
3.Определение перфрингенс-титра почвы: а) почвенную суспензию прогревают
10-15 мин при 80С для того, чтобы неспоровые бактерии не росли на среде; б ) посев 10-
кратных разведений почвы на среду Вильсона-Блера и инкубация при 37 - 43 С, 3-18час
или посев на среду Тукаева (молочная среда) и инкубация 3 – 4 часа; в) на среде Вильсона-Блера C. perfringens образует чёрные колонии и газ разрывает среду, а на среде Тукаева наблюдается створаживание молока, а газ разрывает сгустки казеина и вытесняет в верхнюю часть пробирки; наличие C. perfringens подтверждается микроскопически (готовят мазок, окрашивают по Грамму и микроскопируют, под микроскопом видны крупные грам «+» палочки) г) расчет перфрингенс-титра (с учетом разведения определяют количество почвы в граммах, в котором обнаружена клетка C. perfringens).Перфрингенс-титр определяется максимальным разведением почвенной суспензии, при посеве которого образуются на среде Вильсона-Блера характерные черные колонии.
Нормативы по коли-титру и перфрингенс-титру почвы.
Оценка почвы |
|
Коли-титр |
Перфрингенс-титр |
|
|
|
|
Незагрязнённая |
|
1 г и больше |
0,1 г и больше |
|
|
|
|
Слабо загрязнённая |
|
0,1-0,01 |
0,01-0,001 |
|
|
|
|
Умеренно загрязнённая |
|
0,01-0,001 |
0,001-0,0001 |
|
|
|
|
Сильно загрязнённая |
|
0,001 и меньше |
0,0001 и меньше |
|
|
|
|
|
Микрофлора воды. |
|
Вода – естественная среда обитания микроорганизмов. Состав микрофлоры воды зависят от химического состава воды, температуры, содержания CO2 и O2, рН, облучения солнечными лучами, содержания питательных веществ, флорой и фауной, глубиной водоёма, выпуском сточных и промышленных вод.
В пресных водоёмах (реки, озёра) нормальными обитателями являются Micrococcus roseus и др. микрококки, Pseudomonas fluorescens, извитые формы (Sp. rubrum). В воду поступают сапрофитные микробы почвы: p. Azotobacter, p. Nitrobacter, p. Proteus, p.
Pseudomonas, p. Spirillum и др. Микробы воды участвуют в самоочищении водоемов. Они расщепляют органические вещества и делают их пригодными для усвоения другими организмами. Они являются также пищей для раков и моллюсков.
Больше всего микроорганизмов находится в придонных слоях, на дне, в прибрежной зоне (осенью и весной), т.к. на твердых частицах, в пористых материалах задерживаются питательные вещества. Чем больше органических веществ содержится в открытых водоёмах, тем у них более богатая микрофлора. В такой загрязненной органическими веществами воде можно обнаружить клостридии и другие анаэробы, увеличивается также количество аэробов (бактерий, вибрионов, спирохет). В водоёмах, богатых сероводородом, обитают фотосинтезирующие бактерии.
Таким образом, микрофлора рек и озёр определяется, в основном, степенью их биологического загрязнения, которое происходит при поступлении в водоемы сточных и промышленных вод. В большой степени она отражает микрофлору почвы около водоёма,
т.к. микроорганизмы попадают в воду с частичками пыли, ливневыми, сточными, талыми водами. Микроорганизмы также попадают в водоёмы из организма рыб, гниющих растений, с отбросами и выделениями человека, животных, а также из воздуха.
Вморях и океанах обитает меньшее количество микробов, чем в пресных водоемах. Это, в основном, солелюбивые (галофильные) и светящиеся микроорганизмы.
Вводу могут попадать патогенные и условно-патогенные микробы из почвы,
вместе со сточными и промышленными водами из населённых пунктов и плавающих судов, при стирке белья, купании лошадей, при попадании в воду трупов грызунов и других животных, погибших от инфекций.
Эти бактерии не приспособлены к существованию в воде и через некоторое время погибают. Но определенное время они сохраняются в воде: сальмонеллы – от 2 дней до 3 месяцев, шигеллы 5-9 дней, лептоспиры 7-150 дней, холерный вибрион до нескольких месяцев и даже может размножаться.
Таким образом, вода может быть фактором передачи инфекционных заболеваний (брюшного тифа и паратифа, дизентерии, сальмонеллёза, холеры,
лептоспироза, полиомиелита, гепатита, туляремии). В связи с этим необходимо проводить санитарно-эпидемиологический контроль состояния воды.
Оценка санитарного состояния воды.
Критерии санитарного состояния воды.
1.ОБЩАЯ МИКРОБНАЯ ЗАГРЯЗНЕННОСТЬ ВОДЫ.
2.КОЛИЧЕСТВО САНИТАРНО-ПОКАЗАТЕЛЬНЫХ МИКРООРГАНИЗМОВ
ВОДЫ.
Санитарно-показательными микроорганизмами воды являются:
а) E. coli, Str. faecalis (свидетельствуют о свежем фекальном загрязнении);
б) p. Citrobacter, p. Enterobacter (свидетельствуют о сравнительно давнем фекальном загрязнении).
Показатели санитарного состояния воды.
1.ОБЩЕЕ МИКРОБНОЕ ЧИСЛО (ОМЧ) ВОДЫ – общее количество микроорганизмов в 1 мл воды.
2.КОЛИ-ТИТР, КОЛИ-ИНДЕКС, ТИТР ЭНТЕРОКОККА и др. (оценивают количество санитарно-показательных микробов).
КОЛИ-ИНДЕКС – число жизнеспособных клеток E. coli в 1 л воды.
КОЛИ-ТИТР – наименьший объём воды в мл, в котором определяется хоть одна жизнеспособная клетка E. coli.
Методы определения.
Для оценки санитарного состояния исследуют: 1) водопроводную воду; 2)
дистиллированную воду; 3) воду открытых водоемов.
Определение ОМЧ водопроводной воды: а) берут не менее 500 мл воды с
соблюдением асептики (обжигают краны, используют стерильную посуду); б) делают посев 10-кратных разведений воды (1:10, 1:100 и т.д.) в чашки Петри по 1 мл глубинным методом Коха на МПА (для бактерий) и на сусло-агар (для грибов); в) инкубируют при
37С, 24 час для бактерий и при 24С, 2-3 суток для грибов; г) считают число колоний (1
колония – 1 клетка); г) число колоний (1 колония=1 клетка) умножают на степень разведения и получают микробное число воды (т.к. объем посева - 1 мл, а ОМЧ воды – число микроорганизмов в 1 мл воды).
Определение микробного числа дистиллированной воды. 300 мл воды отбирают в стерильные бутылки из бюретки, которую обжигают ваткой, смоченной спиртом. Бутылки закрывают ватными пробками и бумажными колпачками. Дистиллированную воду для приготовления инъекционных растворов, отбирают в стерильные флаконы по 1520 мл из ёмкостей, в которых проводится стерилизация. Посев и расчет производят так же, как и при исследовании водопроводной воды.
Определение микробного числа речной воды. 100 мл воды берут при помощи

батометра с определенной глубины. Делают посевы 1,0; 0,1 и 0,001 мл так же, как и при исследовании водопроводной воды.
Определение коли-титра и коли-индекса. Разработаны стандарты определения этих показателей для водопроводной воды и воды артезианских скважин. Для воды открытых водоемов стандарты не разработаны и для ее анализа используют разные методы в зависимости от загрязнения воды.
Для определения коли-титра воды чаще используют двухфазный бродильный
метод.
Двухфазный бродильный метод.
Первый этап (1-ый день) – делают посев на среду Эйкмана (глюкозопептонная среда – ГПС) с поплавками для сбора газа и посевы ставят в термостат (инкубируют) при 43 C на 24 часа.
Для посева малых объёмов воды используется разведённая среда Эйкмана (1% пептон; 0,4% NaCl; 0,5% глюкоза).
Для посева больших объёмов – концентрированная среда Эйкмана, содержащая 10кратную концентрацию основных компонентов.
Концентрированную среду Эйкмана используют для анализа водопроводной воды.
Делают посев двух проб воды по 100 мл в колбы с 10 мл среды и десяти проб по 10 мл воды в пробирки с 1 мл среды. Таким образом, объем засеянной воды – 300 мл: 2 колбы по 100 мл и 10 пробирок по 10 мл.
Второй этап (2-ой день) – делают пересевы на среду Эндо и РДА (розолово-
дифференциальный агар) из тех колб и пробирок, где наблюдается рост. Признаки роста E. coli на среде Эйкмана - диффузное помутнение и образование газа. Посевы инкубируют при 37 C 24 часа.
Третий этап (3-ий день) – просматривают посевы на среде Эндо и РДА. Признаки роста E. coli на среде Эндо - образование гладких колоний красного цвета, с металлическим блеском. Признаки роста E. coli на РДА - пожелтение среды, вспенивание конденсационной жидкости и разрывы в РДА.
Проводят микроскопическое подтверждение E. coli: из подозрительных колоний делают мазки и окрашивают по Граму; под микроскопом наблюдают грам «-» мелкие палочки.
Проводят биохимическое подтверждение E. coli - оксидазный тест на цитохромоксидазу. Если есть цитохромоксидаза - бумажка синеет в течение 1 минуты. E. coli - оксидазоотрицательная. Оксидазный тест позволяет отличить E. coli от грамотрицательных, но оксидазоположительных бактерий семейства Pseudomonadaceae.
Если обнаруживают в мазках грам «-» мелкие палочки, которые являются оксидазоотрицательными, результат анализа считается положительным (вывод: обнаружена кишечная палочка).
По количеству положительных проб по специальным таблицам ГОСТа 18963-73 определяют коли-титр и коли-индекс. Например, E. coli обнаружена в одной колбе и в трёх пробирках. Ищем в таблице по вертикали 1 и горизонтали 3. На пересечении находим коли-титр 56 и коли-индекс 18.
Если проводят определение коли-титра воды открытых водоемов, то для анализа используют разведённую среду Эйкмана, т.к. эта вода более загрязненная, поэтому ее засевают в малых объемах (1 мл воды + 10 мл среды).
Для определения коли-индекса воды используют метод мембранных фильтров.
Метод мембранных фильтров.
1. Воду пропускают через мембранный фильтр №3 (диаметр пор = 0,7 мкм). Мембранные фильтры перед фильтрованием стерилизуют кипячением в дистиллированной воде.
Воду из водопроводной системы Москвы и Санкт-Петербурга и воду артезианских скважин фильтруют в объёме 500 мл, воду других городов – в объёме 333 мл.