Добавил:
Здесь собраны файлы для СФ и общие дисциплины других факультетов. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект - СИЦ.docx
Скачиваний:
1
Добавлен:
30.08.2025
Размер:
1.04 Mб
Скачать

Химическая адгезия к большинству материалов,

используемых для реставрационных работ (композитам, амальгамам, материалам, содержащим эвгенол, к азоту, платине, оксидированной фольге, нержавеющей стали, олову, золотому сплаву), объясняется способностью стек-лоиономерных цементов образовывать хелатные и водород­ные связи с различными субстратами (P.Hotz et. al., 1977).

фторзависимый кариесстатический эффект осно­ван на двух явлениях, происходящих во время и после зат­вердевания стеклоиономерного цемента, — выделении фтора и образовании слоя фторсодержащих апатитов на границе между материалом пломбы и тканями зуба (L.Forsten, 1977; D.H.Retief et al., 1984; M.J.Hicks et al., 1986;A.D.Wilsonetal., 1986;A.M.Linetal., 1992;S.B.Geiger, S.Weiner, 1993).

Выделение ионов фтора начинается в первую фазу (фазу растворения) после смешивания порошка и жидко­сти цемента при растворении поверхности фторсодержа­щих частичек порошка и длится в течение всего периода экстрагирования ионов, достигая максимума через 24-48 ч и резко снижаясь после 24-72 ч (рис. 12). В этот период создается "резерв" фторида, который будет выделяться в снижающихся количествах после отвердевания цемента в течение 1 мес и затем на очень низком уровне в течение 1-6 мес (L.Forsten, 1977; M.L.Swartz et al., 1984;

A.D.Wilson et al., 1986). Позднее выделение фтора может происходить за счет растворения присутствующих в от­вердевшем материале фтористых солей "резерва", диффу­зии из частиц порошка и из-за естественного разрушения цемента. Следует напомнить, что деградация отвердевше­го цемента происходит за счет растворения водой (влага ротовой жидкости), кислотой (продуцируемой микроор­ганизмами зубной бляшки или попадающей извне) и сти­рания при жевании и чистке зубов. Все эти механизмы способствуют освобождению фтора, содержащегося в материале.

Рис. 12. Зависимость выделения фтора от времени, прошедшего от начала смешивания порошка и жидкости стеклоиономерного цемента.

Считается, что фтор диссоциирует в ткани зуба и вы­деляется в ротовую жидкость, оказывая кариесстатический и антибактериальный эффект. Известно, что механизм действия фтора при его воздействии непосредственно в полости рта состоит из нескольких слагаемых:

1. Образование более устойчивого к действию кислот фторапатита путем замещения фтором гидроксильной группы гидроксиапатита.

2. Стимуляция минерализации (катализирование вклю­чения минеральных компонентов в эмаль, закрепле­ние граней растущего кристалла).

3. Образование на поверхности эмали малорастворимо­го фторида кальция, который, медленно диссоциируя, поставляет в большом количестве ионы фтора для ре­акции замещения гидроксильных групп в апатитах эмали.

4. Снижение выработки кислоты микроорганизмами (блокирование ферментов микробного гликолиза (энолазы, превращающей 2-фосфорглицерат в фос-фоэнолпируват) с прерыванием процесса образова­ния молочной кислоты).

5. Блокирование реакций синтеза микроорганизмами внеклеточных полисахаридов декстрана и левана, обеспечивающих прикрепление зубной бляшки к по­верхности зуба.

6. Изменение электрического потенциала поверхности эмали и препятствие оседанию на ней микробных частиц.

Нельзя утверждать, что все эти механизмы реализуются теми малыми количествами фтора, которые выделяются из цемента пломбы, однако вполне вероятно, что обнаружен­ный рядом исследователей кариесстатический эффект это­го материала отчасти связан с этими процессами.

Высказывалось предположение о способности стеклоио­номерных цементов к адсорбции ионов фтора — насыще­нию ионами фтора путем их контакта с фторсодержащими материалами, в частности, с зубными пастами, гелями, ра­створами для полосканий и аппликаций. Это явление по­лучило название "батарейного" перезаряжающего эффек­та стеклоиономерных цементов. Поступившие ионы фто­ра, которые связались с полимерной матрицей материала, затем медленно освобождаются в полость рта.

Исследования переходного слоя между стеклоиономер-ным цементом и дентином по методике SEM и FTIP (транс­миссионная спектроскопия по Fourir) показали, что пере­ходный слой состоит в основном из углеродистых апатитов, насыщенных фтором (S.B.Geiger, S.Weiner, 1993). Этот слой образуется в течение 2-4 ч после размещения стекло­иономерного цемента на дентине. Считается, что образо­вание насыщенных фтором углеродистых апатитов являет­ся результатом реакции между дентином и стеклоиономер-ным цементом, содержащим соли фтора. Апатиты, насы­щенные фтором, меньше подвергаются растворению, чем другие апатиты дентина, и их наличие в промежуточном слое может служить барьером в процессе развития вторич­ного кариеса.

Выделение фтора прямо пропорционально количеству фторсодержащего материала, то есть — размеру пломбы. Этим объясняется относительно низкий резерв фторида, создаваемый прокладочными цементами, наносимыми тон­ким слоем.

Следует, однако, отметить, что вопрос о выделении фто­ра стеклоиономерными цементами, как и о наличии пере­заряжающего эффекта, до сих пор не решен однозначно. Существуют исследования, не подтверждающие кариесп-рофилактические свойства этих материалов.

Антибактериальные свойства стеклоиономерных це-ментов связаны с действием выделяющегося фтора (D.McComb, D.Ericson, 1987). Доказано, что поверхность пломб из стеклоиономерных цементов имеет более низкий уровень количества бактерий, чем из цинк-фосфатных и цинк-поликарбоксилатных цементов.

Хорошая биосовместимость, нетоксичность. Стек-лоиономерные цементы обладают довольно высокой био­совместимостью (R.S. Tobias et al., 1978; H.Kawahara et al., 1979;A.D.Wilson,H.J.Prosser, 1982; A.W.G.Walls, 1986). Неоднократно проводимые тесты с культурой ткани указы­вали на наличие более слабой реакции клеток на стеклоио-номерные цементы, чем на цинкоксидэвгенольный матери­ал или на цинкполикарбоксилатный цемент. В эксперимен­тах in vivo также была продемонстрирована более мягкая реакция на стеклоиономерный цемент, чем на воздействие цинкоксидэвгенольного материала.

Однако существуют исследования, свидетельствующие о значительном разрушении клеток при тестах с культурой клеток, а также об омертвении пульпы, задержке процесса образования нерегулярного вторичного (третичного) денти­на при накладывании цемента на дно глубоких кариозных полостей (R.S.Paterson, A.Watts, 1987). Это может быть свя­зано с раздражением пульпы ионами водорода вследствие низкого начального значения рН сразу после замешивания цемента. Именно поэтому свежезамешанный цемент обла­дает слабой цитотоксичностью, но этот эффект снижается параллельно с отвердеванием материала. Сама по себе по лиакриловая кислота не может диффундировать в дентин из-за высокого молекулярного веса.

Рис. 13. Механизм возникновения боли(гиперчувствительности) при воздействии факторов, вызывающих движение жидкости в дентинных канальцах (высушивания, контакта с высокими концентрациями свободных ионов и т.д.): движение жидкости в сторону дефекта дентина вызывает смещение в ту же сторону отростка и клетки одонтобласта, влекущих за собой оплетающее их афферентное нервное окончание, что вызывает его раздражение (а). Интенсивное движение жидкости в сторону дефекта (например, при пересушивании дентина) может привести к аспирации клетки одонтобласта в канадец и к сильному растягиванию нервного окончания, вплоть до его разрыва (б) .

Еще одним аспектом влияния стеклоиономерного цемен­та на пульпу является его гидрофильность. Сразу после вне­сения материала в полость высокая концентрация кислоты и свободных ионов может привести к усиленному движе­нию воды из пульпы к цементу (рис. 13). Это чревато раз­витием гиперчувствительности пульпы, а при пересушивании дентина и нарушении соотношения порошок/жид­кость в сторону порошка — к ее сильной дегидратации. Однако выполнение всех необходимых требований при работе со стеклоиономерными цементами практически устраняет риск описанных осложнений.

Биосовместимость стеклоиономерных цементов позво­ляет применять их без прокладки или в качестве прокла­дочного материала, но возможность раздражения пульпы из-за начальной высокой кислотности диктует необходи­мость использования кальцийсодержащих прокладок при глубоких полостях в сочетании с острым течением кариоз­ного процесса.

Близость коэффициента термического расшире­ния к таковому эмали и дентина. Коэффициент темпе­ратурного расширения стеклоиономерных цементов наибо­лее близкий к тканям зуба по сравнению с другими стома­тологическими пломбировочными материалами (табл. 5). Это предотвращает растрескивание пломбированных зубов или нарушение краевого прилегания пломб при изменени­ях температуры в полости рта.

Теплопроводность стеклоиономерных цементов также наиболее близка к теплопроводности дентина по сравне­нию с другими пломбировочными материалами (табл. 6).

Выделение тепла в процессе отвердеваниястекло-иономерного цемента незначительно, что исключает воз­можность неблагоприятного термического влияния на пульпу.

Высокая прочность на сжатие. Прочность на сжа­тие стеклоиономерных цементов является самой высокой среди всех реставрационных цементов и приближается по значению к таковой у композитных материалов (табл. 7). Это свойство стеклоиономеров позволяет применять их в качестве базы под композитный материал при использо­вании «сэндвич»-техники, выдвигающей высокие прочно­стные требования к базисному материалу (J.W.McLean, A.D Wilson, 1977; H.J.ProsseretaL, 1984)

Прочность на сжатие восстановительного стеклоиономерного цемента повышается в течение периода времени от 24 ч до 1 года в среднем от 160 МПа до 280 МПа (в отличие от цинк-поликарбоксилатных цементов) за счет инкорпорации ионов в матрицу и образования в ней пере­крестных связей Прочность нарастает быстрее, если в ранний период цемент изолирован от влаги.

Таблица 5. Линейный коэффициент температурного расширения тканей зуба и различных материалов, применяемых в стоматологии (по данным М.М.Гернера и соавт., 1985; R.van Noort, 1994; R.G.Graig, 1997)

Таблица 6. Теплопроводность тканей зуба и различных материалов, применяемых в стоматологии (R.G.Graig, 1997).

Низкая прочность на диаметральное растяжение объясняет хрупкость материала (табл 8) (L H Lloyd, L Mitchell, 1984; H.J Prosser et al., 1984; E Osman et al , 1986, H J.Prosser et a!.. 1986). Данное свойство делает не­возможным применение стеклоиономерных цементов в ме­стах значительной нагрузки, особенно разнонаправленной (режущий край, бугры зубов, пара пульп арные штифты). Только в том случае, когда стеклоиономерная реставрация. со всех сторон поддержана тканями зуба, она защищена от опасного давления

Приведенные в (табл 9) данные о прочности на сжатие и на диаметральное растяжение некоторых образцов стек­лоиономерных цементов указывают на общую тенденцию, присущую всем представителям этого класса материалов

Таблица 7. Прочность на сжатие тканей зуба и различных материалов, применяемых в стоматологии (по данным М.М. Гернераисоавт., 1985; R.vanNoort, 1994; R.G.Graig, 1997)

Низкий модуль эластичности.Это свойство стекло­иономерных цементов позволяет применять их в качестве пломбировочных материалов в полостях V класса: в этом случае их способность к пластичным деформациям компен­сирует напряжение, накапливающееся в пришеечном уча­стке зуба во время его микродвижений при жевании без разрушения материала и нарушения его краевого прилега­ния. Стеклоиономерные цементы используемые в качестве прокладок или базы под реставрацию композитными мате риалами, компенсируют формирующееся при усадке ма­териала внутреннее напряжение, препятствуя деформа­ции пломбы.

Относительная ригидность стеклоиономерных матери­алов объясняется наличием стеклянных частиц и ионной природой связи между полимерными цепями, однако мате­риал является достаточно эластичным (табл. 10).

Таблица 8. Прочность на диаметральное растяжение тканей зуба и различных материалов, применяемых в стоматологии (поданным R.vanNoort, 1994; R.G.Graig, 1997)

Усадка. Объемная усадка стеклоиономерных цементов составляет 1,0-3,6 % по истечении 30 сек после их нало­жения и 2,8-7,1 % — после 24 ч (табл. 11). Сила этой усад­ки составляет 40 % силы усадки, возникающей во время полимеризации композитных материалов (A.J.Feilzer et al., 1986), что обеспечивает возможность до определенной сте­пени компенсации этой силы при одновременном приме­нении с композиционными материалами в технике "сэнд­вич".

Поглощение воды компенсирует присущую стеклоио-номерам усадку при отвердевании и отвечает за стабиль­ность размеров пломб. Вода абсорбируется цементом при условии высокой относительной влажности (85% и более) или в присутствии самой воды, что принуждает цемент рас­ширяться. Усадка наблюдается, если цемент пересушива­ется, что происходит в среде с относительной влажнос­тью, меньшей 80 %.

Таблица 9. Сравнительные показатели прочности на сжатие и на диаметральное растяжение различных стекло­иономерных цементов (R.van Noort, 1994).

Таблица 10. Модуль эластичности тканей зуба и различных материалов, применяемых в стоматологии (поданным R-G.Graig, 1997)

Таблица 11. Уменьшение объема (усадка) различных стеклоиономерных цементов при 23° С 24 ч спустя после замешивания материала (C.L.Davidson, L.A.Mjor, 1999).

Примечание: последние три стеклоиономерных цемента являются металлосодержащими.

Растворимость. Высокая растворимость в воде — не­достаток многих цементов, в том числе — силикатных (табл 12). Стеклоиономерные цементы не являются ис­ключением (R W.Phillips et al., 1985; D.J Setchell et al., 1985). Растворимость материала зависит от цементной композиции, используемой клинической техники и окру­жающей среды полости рта. Растворение несозревшего цемента может продолжаться до полного отвердевания материала в течение 24 ч Это объясняет необходимость временной защиты поверхности цемента водоне-проница-емым слоем. Такая защита должна действовать по край­ней мере в течение 1ч — до достижения уровня экстраги­рования ионов, позволяющего цементу достигнуть опти­мального отвердевания.

Растворимость материала также снижается за счет по­вышения соотношения порошок — жидкость. Минимизи­ровать размывание цемента можно путем строгого следо­вания клинической технике использования материала

Потеря материала из-за растворения в жидкости поло­сти рта прекращается через несколько дней после окон­чательного отвердевания цемента, и дальнейшая убыль материала зависит уже от среды полости рта от кислот­ных атак и стирания Кислотные атаки реализуются в ос­новном в местах скопления зубной бляшки, микрофлора которой продуцирует кислоты Преимуществом стеклоио­номерных цементов перед другими цементами является наиболее низкая растворимость в кислотах (табл 13).

Таблица 12. Уменьшение массы пломб из различных стоматологических цементов за счет воздействия влаги в полости рта.

Низкая устойчивость к истиранию. Устойчивость к механическому истиранию у стеклоиономерных цемен­тов низкая, что ограничивает их применение в участках с высокими нагрузками (J.W McLean, A.D Wilson, 1977;

Н J Prosser et al , 1984). По этой же причине, в дополне­ние к высокой хрупкости, данный тип цементов в основ­ном не может быть использован в качестве долгосрочного постоянного пломбировочного материала (за исключением полостей III и V классов по Блэку)

В исследованиях счираемости стеклоиономерных цемен­тов in vitro при комбинированном воздействии кислоты и абразии было обнаружено, что меньшую абразию и эро­зию демонстрируют цементы на основе полиакриловой кислоты, чем на основе полималеиновой. Однако данный тест не проверялся в клинике

Эстетические свойства. Цвет стеклоиономерного це­мента обеспечивается видом стекла и добавками цветовых пигментов (типа оксида железа или угля) Цветовые каче­ства этих материалов вполне удовлетворительны и могут быть близкими к таковым тканей зубов, как и у композиционных материалов, немного отличаясь от них по яркости и насыщенности (G.Mount, 1988) (табл. 14)

Таблица 13. Максимальная кислотная эрозия стоматологических цементов согласно Требовании к стоматологическим цементам по ANSI/ADA Specification No. 96 (1994)

Для стеклоиономерных цементов основную эстетичес­кую проблему составляет не цвет, а неудовлетворитель­ная прозрачность, значительно уступающая прозрачнос­ти композитных материалов. Нередко эти цементы выг­лядят тусклыми и безжизненными, что и ограничивает их использование в качестве восстановительного материала для лечения пришеечных дефектов и небольших полостей III класса. Прозрачность стеклоиономерных цементов яв­ляется ближе к прозрачности дентина, чем эмали.

Опаковость (обратная характеристика прозрачности) ранних вариантов стеклоиономерных цементов составля­ла 0,39-0,85, современных — достигает 0,4 (опаковость эмали — 0,35, дентина — 0,70). В некоторых случаях вы­сокая опаковость цементов бывает полезной для маски­ровки пятен или других образований высокой интенсив­ности окрашивания. Однако именно это свойство обычно значительно затрудняет устранение оптической границы между материалом и тканями зуба.

Таблица 14. Цветовые характеристики дневного света, отраженного от поверхностен зуба человека различных пломбировочных материалов (R.G.Graig, 1997)

Примечания Световое отражение (яркость) принимается за 0 у черных тел (отсутствие отражения) и за 100 — у белых тел, отражаю­щих все лучи Насыщенность света принимается за 0 у ахроматичес ьих (серых) тел и за 1 —при максимальном проявлении данного цвета.

Таким образом, до сих пор проблематичной является возможность создания эстетически приемлемого стеклоио-номерного цемента: относительно удовлетворительные по оптическим характеристикам стеклоиономеры имеют худ­шие характеристики отвердевания.

Однако положительным свойством стеклоиономерных цементов является их более низкая, чем у силикатных це­ментов и композитов, восприимчивость к окрашиванию, что объясняется лучшей связью между матриксом и стеклом по сравнению с таковой между наполнителем и смолой у ком­позита.

Проблемой стеклоиономерных цементов является недо­статочная полируемость, не позволяющая обеспечить ка­чество поверхности пломбы, близкое к поверхности есте­ственного зуба.