Добавил:
Здесь собраны файлы для СФ и общие дисциплины других факультетов. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Занятие 2. Биохимия крови..docx
Скачиваний:
2
Добавлен:
30.08.2025
Размер:
2.04 Mб
Скачать

3. Химические механизмы регуляции кислотно-основного состояния. Буферные системы крови – фосфатная, белковая, бикарбонатная, гемоглобиновая. Напишите соответствующие реакции.

При изменении концентрации ионов Н+ активируется компенсационная деятельность двух крупных систем организма:

1. Система химической компенсации: действие внеклеточных и внутриклеточных буферных систем; интенсивность внутриклеточного образования ионов Н+ и НСО3–.

2. Система физиологической компенсации: легочная вентиляция и удаление СО2; почечная экскреция ионов Н+ (ацидогенез, аммониегенез), реабсорбция и синтез НСО3–.

Буферные системы – это соединения, противодействующие резким изменениям концентрации ионов Н+, включающие кислотно-основные пары: слабое основание (анион, А–) и слабая кислота (Н-А). Они вступают в действие моментально и через несколько минут их эффект достигает максимума возможного. Существует несколько буферных систем жидкостей организма – бикарбонатная, фосфатная, белковая, гемоглобиновая.

Бикарбонатная буферная система. Эта система состоит из бикарбонат-иона (НСО3–) и угольной кислоты (Н2СО3), мощность составляет 65% от общей буферной емкости крови. В норме отношение HCO3– к H2CO3 равно 20 : 1. Работа этой системы неразрывно и тесно связана с легкими. При поступлении в кровь более сильной кислоты, чем угольная, ионы бикарбоната натрия взаимодействуют с ней, происходит реакция обмена и образуется соответствующая соль и угольная кислота. В результате, благодаря связыванию введенной в систему кислоты, концентрация ионов водорода значительно понижается.

NaНСО3 + Н-Анион ↔ Н2СО3 + Na+ + Анион–

При поступлении оснований они реагируют с угольной кислотой и образуют соли бикарбонатов:

H2CO3 + Катион-ОН ↔ Катион+ + HCO3– + Н2О

Возникающий при этом дефицит угольной кислоты компенсируется уменьшением вы деления CO2 легкими. При накоплении угольной кислоты в крови не происходит параллельного значимого увеличения концентрации НСО3–, т.к. она очень плохо диссоциирует. Благодаря работе бикарбонатного буфера концентрация водородных ионов понижается по двум причинам: угольная кислота является очень слабой кислотой и плохо диссоциирует; в крови легких благодаря присутствию в эритроцитах фермента карбоангидразы, угольная кислота быстро расщепляется с образованием CO2, удаляемого с выдыхаемым воздухом:

Н2СО3 ↔ Н2О + СО2

Кроме эритроцитов, значительная активность карбоангидразы отмечена в эпителии почечных канальцев, клетках слизистой оболочки желудка, коре надпочечников и клетках пе чени, в незначительных количествах – в центральной нервной системе, поджелудочной же лезе и других органах

Фосфатная буферная система. Фосфатная буферная система составляет около 1-2% от всей буферной емкости крови и до 50% буферной емкости мочи. Она образована дигидрофосфатом (NaH2PO4) и гидрофосфатом (Na2HPO4) натрия. Первое соединение слабо диссоциирует и ведет себя как слабая кис лота, второе обладает щелочными свойствами. В норме отношение HРO42– к H2РO4– равно 4 : 1. При взаимодействии кислот (ионов водорода) с двузамещенным фосфатом натрия (Na2HPO4) натрий вытесняется, образуется натриевая соль дигидрофосфата (H2PO4–). В результате, благодаря связыванию введенной в систему кислоты, концентрация ионов водорода значительно понижается.

HPO42– + Н-Анион ↔ H2PO4– + Анион–

При поступлении оснований избыток ОН– групп нейтрализуется имеющимися в среде Н+, а расход ионов Н+ восполняется повышением диссоциации NaH2PO4.

H2PO4– + Катион-ОН ↔ Катион+ + HPO42– + Н2О

Основное значение фосфатный буфер имеет для регуляции pH интерстициальной жид кости и мочи. В моче роль его состоит в сбережении бикарбоната натрия за счет дополни тельного иона водорода (по сравнению с NaHCO3) в составе выводимого NaH2PO4:

Na2HPO4 + Н2СО3 ↔ NaH2PO4 + NaНСО3

Кислотно-основная реакция мочи зависит только от содержания дигидрофосфата, т.к. бикарбонат натрия в почечных канальцах почти полностью реабсорбируется.

Белковая буферная система. Буферная мощность этой системы составляет 5% от общей буферной емкости крови. Белки плазмы, в первую очередь альбумин, играют роль буфера благодаря своим амфотерным свойствам. В кислой среде подавляется диссоциация СООН-групп, а группы NH2 связывают избыток Н+, при этом белок заряжается положительно. В щелочной среде усиливается диссоциация карбоксильных групп, образующиеся Н+ связывают избыток ОН–-ионов и pH сохраняется, белки выступают как кислоты и заряжаются отрицательно.

Гемоглобиновая буферная система. Наибольшей мощностью обладает гемоглобиновый буфер, который можно рассматривать как часть белкового. На него приходится до 30% всей буферной емкости крови. В буферной системе гемоглобина существенную роль играет гистидин, который содержится в белке в большом количестве (около 8%). Изоэлектрическая точка гистидина равна 7,6, что позволяет гемоглобину легко принимать и легко отдавать ионы водорода при малейших сдвигах физиологической рН крови (в норме 7,35-7,45). Пара Н-Нb / Н-НbО2 является основной в работе гемоглобинового буфера. Соединение ННbО2 является более сильной кислотой по сравнению с угольной кислотой, HHb – более слабая кислота, чем угольная. Работа гемоглобинового буфера неразрывно связана с дыхательной системой.

В легких после удаления СО2 (угольной кислоты) происходит защелачивание крови. Параллельное присоединение О2 к дезоксигемоглобину H-Hb образует кислоту Н-НbО2, более сильную, чем угольная. Поэтому она отдает свои ионы Н+ в среду, предотвращая повышение рН:

Н-Hb + O2 → [H-HbO2] → НbO2 + Н+

В капиллярах тканей постоянное поступление кислот (в том числе и угольной) из клеток приводит к диссоциации оксигемоглобина НbO2 (эффект Бора) и связыванию ионов Н+ в виде Н-Hb:

НbO2+ Н+ → [H-HbO2] → Н-Hb + O2