Добавил:
Здесь собраны файлы для СФ и общие дисциплины других факультетов. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Переваривание углеводов. Метаболизм гликогена..docx
Скачиваний:
0
Добавлен:
30.08.2025
Размер:
1.92 Mб
Скачать

6. Особенности ферментов обмена углеводов в печени: участие глюкокиназы и глюкозо-6-фосфатазы в поддержании постоянной концентрации глюкозы в крови.

Существуют принципиальные отличия метаболизма глюкозы в печени от других тканей. Это объясняется рядом причин и, в частности, наличием в тканях различных изоферментов гексокиназы. Для печени характерен особый изофермент гексокиназа IV, получивший собственное название – глюкокиназа. Отличиями этого фермента от гексокиназ других тканей являются:

  • низкое сродство к глюкозе (в 1000 раз меньше), что ведет к захвату глюкозы печенью только при ее высокой концентрации в крови (после еды). Иными словами, печень не будет использовать глюкозу, если её концентрация в крови невысока (в нормальном диапазоне).

  • продукт реакции (глюкозо-6-фосфат) не ингибирует фермент, в то время как в других тканях гексокиназа чувствительна к такому влиянию. Это позволяет гепатоциту в единицу времени захватывать глюкозы больше, чем он может сразу же утилизовать,

  • чувствительность к действию инсулина – фермент активируется этим гормоном. Благодаря таким отличиям гепатоцит может эффективно захватывать глюкозу после еды, накапливать глюкозо-6-фосфат и, "не торопясь", метаболизировать его в любом направлении – синтез гликогена, пентозофосфатный путь, окисление до ацетил-SКоА, CO2 и H2O, и синтез липидов.

7. Синтез гликогена из глюкозо-6-фосфата (гликогеногенез). Биологическое значение, реакции, ферменты. Тканевая и клеточная локализация.

Синтез глюкозы происходит в печени и мышцах.

Синтез гликогена начинается с образования глюкозо-6-фосфата под действием глюкокиназы в печени или других гексокиназ в остальных тканях. Как уже говорилось, глюкокиназа обладает низким сродством к глюкозе, и в гепатоцитах глюкоза будет задерживаться только при ее высоких концентрациях. Непосредственно синтез гликогена осуществляют следующие ферменты:

1. Фосфоглюкомутаза – превращает глюкозо-6-фосфат в глюкозо-1-фосфат.

2. Глюкозо-1-фосфат-уридилтрансфераза – фермент, осуществляющий ключевую реакцию синтеза. Необратимость этой реакции обеспечивается гидролизом образующегося дифосфата.

3. Гликогенсинтаза – образует α1,4-гликозидные связи и удлиняет гликогеновую цепочку, присоединяя активированный С1 УДФ-глюкозы к С4-глюкозы на концевом участке гликогена.

4. Амило-1,4-1,6-гликозилтрансфераза, "гликоген-ветвящий" фермент – переносит фрагмент с минимальной длиной в 6 остатков глюкозы на соседнюю цепь с образованием 1,6-гликозидной связи.

Вопрос 8. Распад гликогена до глюкозо-6-фосфата (гликогенолиз). Биологическое

значение, реакции, ферменты. Тканевая и клеточная локализация.

Мобилизация гликогена (гликогенолиз) в тканях активируется при недостатке свободной глюкозы в клетке, а значит и в крови (голодание, мышечная работа). При этом уровень глюкозы крови "целенаправленно" поддерживает только печень, в которой имеется глюкозо-6-фосфатаза, гидролизующая фосфатный эфир глюкозы. Образуемая при этом свободная глюкоза выходит через плазматическую мембрану в кровь. Остальные органы используют гликоген только для собственных нужд. В гликогенолизе непосредственно участвуют три фермента: 1. Фосфорилаза гликогена (кофермент пиридоксальфосфат) – расщепляет α1,4-гликозидные связи с образованием глюкозо-1-фосфата. Фермент работает до тех пор, пока до точки ветвления α(1-6) не останется 4 остатка глюкозы.

2. α(1-4)-α(1-4)-Глюкантрансфераза – фермент, переносящий фрагмент из трех остатков глюкозы на другую цепь с образованием новой α1,4-гликозидной связи. При этом на прежнем месте остается один остаток глюкозы и "открытая" доступная α1,6-гликозидная связь.