- •1. Характеристика процесса гликолиза (молочнокислое брожение)
- •Первый этап гликолиза
- •Второй этап гликолиза
- •3. Судьба продуктов гликолиза в аэробных условиях. Глицеролфосфатная и малат-аспартатная челночные системы. Энергетический выход аэробного окисления глюкозы.
- •Глицеролфосфатный челночный механизм
- •Малат-аспартатный челночный механизм
- •5. Характеристика процесса глюконеогенеза:
- •6. Реципрокная регуляция гликолиза и глюконеогенеза:
5. Характеристика процесса глюконеогенеза:
ГЛЮКОНЕОГЕНЕЗ
В клетках организма всегда существует потребность в глюкозе:
-для эритроцитов глюкоза является единственным источником энергии,
-нервная ткань потребляет около 120 г глюкозы в сутки, что составляет до 70% глюкозы образующейся в печени, притом эта величина практически не зависит от интенсивности ее работы. Только в экстремальных ситуациях (длительное голодание) она способна получать энергию из неуглеводных источников (из кетоновых тел),
-глюкоза играет весомую роль для поддержания необходимых концентраций метаболитов цикла трикарбоновых кислот (в первую очередь оксалоацетата).
Таким образом, при определенных ситуациях – при низком содержании углеводов в пище, голодании, длительной физической работе – организм должен иметь возможность получить глюкозу. Это достигается процессом глюконеогенеза.
Глюконеогенез – это синтез глюкозы из неуглеводных компонентов: лактата, пирувата, глицерола, кетокислот цикла Кребса и других кетокислот, из аминокислот. Процесс включает все обратимые реакции гликолиза, и особые обходные пути, т.е. он не полностью повторяет реакции окисления глюкозы. Его реакции проходят во всех тканях, кроме последней глюкозо-6-фосфатазной реакции, которая может идти только в печени и почках. Поэтому, строго говоря, глюконеогенез идет только в этих двух органах.
Как указывалось, в гликолизе существуют три необратимые реакции: пируваткиназная (десятая), фосфофруктокиназная (третья) и гексокиназная (первая). На этих реакциях существуют энергетические барьеры, которые при глюконеогенезе обходятся с помощью дополнительных реакций.
Все аминокислоты, кроме кетогенных лейцина и лизина, способны участвовать в синтезе глюкозы. Углеродные атомы глюкогенных аминокислот полностью включаются в молекулу глюкозы, других аминокислот (смешанных) – частично.
Кроме получения глюкозы, глюконеогенез обеспечивает и уборку "шлаков" – лактата, постоянно образуемого в эритроцитах или при мышечной работе и глицерола, являющегося продуктом липолиза в жировой ткани
ОБХОД ДЕСЯТОЙ РЕАКЦИИ ГЛИКОЛИЗА
На этом этапе глюконеогенеза работают два основных фермента – в митохондриях пируваткарбоксилаза и в цитозоле фосфоенолпируват-карбоксикиназа.
В митохондриях пируваткарбоксилаза превращает пировиноградную кислоту в оксалоацетат. Необходимо отметить, что эта реакция идет в клетке постоянно, являясь анаплеротической (пополняющей) реакцией ЦТК.
Далее оксалоацетат должен попасть в цитозоль и превратиться в фосфоенолпируват. Однако дело осложняется непроницаемостью мембраны для оксалоацетата. Зато через мембрану может пройти малат, предшественник оксалоацетата по ЦТК. Повернуть малатдегидрогеназную реакцию ЦТК вспять позволяет избыток НАДН в митохондриях. НАДН поступает из β-окисления жирных кислот, активируемого в условиях недостаточности глюкозы в гепатоците. В результате малат накапливается, выходит в цитозоль и здесь превращается обратно в оксалоацетат.
В цитоплазме фосфоенолпируват-карбоксикиназа осуществляет превращение оксалоацетата в фосфоенолпируват, для реакции требуется энергия ГТФ. От молекулы отщепляется тот же углерод, что и присоединяется
ОБХОД ТРЕТЬЕЙ РЕАКЦИИ ГЛИКОЛИЗА
Второе препятствие на пути синтеза глюкозы – фосфофруктокиназная реакция – преодолевается с помощью фермента фруктозо-1,6-дифосфатазы. Этот фермент есть в почках, печени, поперечно-полосатых мышцах. Таким образом, эти ткани способны синтезировать и фруктозо-6-фосфат и глюкозо-6-фосфат.
ОБХОД ПЕРВОЙ РЕАКЦИИ ГЛИКОЛИЗА
Последняя реакция катализируется глюкозо-6-фосфатазой. Она имеется только в печени и почках, следовательно, только эти ткани могут продуцировать свободную глюкозу. После завершения глюконеогенеза глюкоза выходит в кровь и разносится по организму
Глюконеогенез, как образование глюкозы в печени из неуглеводных компонентов, необходим:
-при гипогликемии во время мышечной нагрузки – синтез из молочной кислоты, поступающей из мышц, из глицерола, образующегося при мобилизации жиров;
-при гипогликемии при голодании – синтез из аминокислот, образующихся при катаболизме белков, и из молочной кислоты.
Таким образом, при голодании или физической нагрузке глюконеогенез, идущий в печени, обеспечивает глюкозой все остальные органы (эритроциты, нервная ткань, мышцы и др.), в которых активен гликолиз и другие процессы, производящие энергию. Наличие глюкозы в указанных клетках необходимо, чтобы поддержать концентрацию оксалоацетата и обеспечить сгорание ацетил-SКоА в цикле трикарбоновых кислот
