Добавил:
Здесь собраны файлы для СФ и общие дисциплины других факультетов. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Синтез АТФ. Окислительное фосфорилирование.docx
Скачиваний:
1
Добавлен:
30.08.2025
Размер:
442.35 Кб
Скачать

Вопрос 3: Окислительное фосфорилирование адф. Механизм сопряжения окисления и фосфорилирования. Хемиосмотическая теория Митчелла.

Так как электроны всегда стремятся переходить от электроотрицательных систем к электроположительным, их транспорт по ЦПЭ к кислороду сопровождается относительно большим снижением свободной энергии.

В ЦПЭ можно выделить 3 участка, в которых перенос электронов сопровождается относительно большим снижением свободной энергии. Это количество свободной энергии необходимо для синтеза АТФ из АДФ и фосфата (фосфорилирование).

Процесс переноса электронов по ЦПЭ и синтез АТФ энергетически сопряжены.

Синтез АТФ из АДФ и Н3РО4 за счет энергии переноса электронов по ЦПЭ называют окислительным фосфорилированием.

Механизм сопряжения окончательно не выяснен, наиболее обоснованной является хемиосмотическая теория Митчелла, предложенная в 1961г.

Перенос электронов по ЦПЭ от НАДН к кислороду сопровождается выкачиванием протонов из матрикса митохондрий через внутреннюю мембрану в межмембранное пространство.

Протоны, перенесенные из матрикса в межмембранное пространство, не могут вернуться обратно в матрикс, так как внутренняя мембрана не проницаема для протонов.

Таким образом, создается протонный градиент, при котором концентрация протонов в межмембранном пространстве больше, а рН меньше, чем в матриксе. Кроме того, каждый протон несет положительный заряд, и вследствие этого появляется разность потенциалов по обе стороны мембраны: отрицательный заряд – на внутренней стороне, положительный заряд – на внешней. В совокупности электрический и концентрационный градиенты составляют электрохимический потенциал ΔμН+ - источник энергии для синтеза АТФ.

Энергия электрохимического потенциала (ΔμН+) используется для синтеза АТФ, если протоны возвращаются в матрикс через ионные каналы АТФ-синтазы (V комплекс).

Наиболее активный транспорт протонов в межмембранное пространство, необходимый для образования ΔμНпроисходит на участках ЦПЭ, соответствующих расположению комплексов I, III, IV. Эти участки называют пунктами сопряжения дыхания и фосфорилирования, где и происходит синтез АТФ

Механизм сопряжения окисления и фосфорилирования

Перепад потенциалов от Н2 до О2 составляет 1,24 В, что теоретически достаточно для синтеза 6 молекул АТФ, однако реально синтезируется не более трёх.

S Н+ ½ О2 S + Н2О (окисление)

3 АДФ + 3Н3РО4 3АТФ (фосфорилирование)

АТФ образуется путём присоединения к АДФ остатка фосфорной кислоты. Этот процесс называется фосфорилированием. Таким образом, два процесса: процесс биологического окисления (передача протонов и электронов по дыхательной цепи) и процесс фосфорилирования (образование АТФ) являются сопряжёнными, так как энергия, образующаяся при окислении, используется для фосфорилирования. Поэтому образование АТФ за счёт энергии, выделяющейся при прохождении электронов по дыхательной цепи, называется окислительным фосфорилированием.

Для количественной характеристики сопряжения окисления и фосфорилирования используется коэффициент фосфорилирования – отношение Р/О. Этот коэффициент показывает, какое количество атомов неорганического фосфора поглощается митохондрией при поглощении одного атома кислорода (или при переносе одной пары электронов на кислород).

Расчёты показывают, что для образования одной макроэргической связи АТФ, затраты на которую составляют не менее 40 кДж/моль, требуется перепад окислительно-восстановительных потенциалов между участниками дыхательной цепи примерно в 0,22 В на пару перенесённых электронов. В дыхательной цепи имеются только три участка с разницей о/в потенциалов, достаточной для синтеза АТФ (три участка сопряжения окисления и фосфорилирования):

I – между НАД∙Н2 и ФМН;

II – между цитохромами b и c;

III – между цитохромами и a3.

На данных этапах выделение энергии достаточно для синтеза АТФ. На остальных этапах перепад о/в потенциалов недостаточен для синтеза АТФ и выделяющаяся энергия (около 40-50%) рассеивается в виде тепла. Таким образом, при прохождении двух электронов по дыхательной цепи, которая начинается НАД-зависимыми дегидрогеназами образуется три молекулы АТФ. В этом случае коэффициент Р/О = 3.

Некоторые субстраты окисления (сукцинат, жирные кислоты) имеют более высокий окислительно-восстановительный потенциал, чем НАД. Поэтому они окисляются не НАД-, а ФАД-зависимыми дегидрогеназами. При окислении таких веществ образуется только две молекулы АТФ, так как пропускается один пункт сопряжения окисления и фосфорилирования. Поэтому коэффициент Р/О = 2.

Приведённые значения коэффициентов фосфорилирования являются расчетными, реальное значение этого коэффициента в физиологических условиях составляет Р/О ≈ 2,5.

Коэффициент Р/О может иметь ещё более низкие значения (Р/О < 2,5), так как в митохондриях иногда происходит разобщение окисления и фосфорилирования. При этом окислительно-восстановительные процессы в дыхательной цепи протекают, но фосфорилирование (синтез АТФ) не происходит, т.е. дыхательная цепь работает как бы на холостом ходу. Вся энергия окисляемых веществ превращается в теплоту. Митохондрии становятся своеобразной клеточной «печкой», производящей теплоту. Это необходимо в тех ситуациях, когда потребность в теплоте для организма больше, чем потребность в АТФ, например, для поддержания температуры тела при охлаждении.

Митчелл:

Важнейшие исследования в разработке этой теории проведены советским ученым В.П. Скулачевым и английским исследователем П. Митчеллом. Сторонники хемиосмотической теории считают, что дыхание и фосфорилирование сопряжены между собой на внутренней мембране митохондрий. Эта сопряженность обусловлена системой трансмембранного перемещения электронов и протонов. Неразрывная взаимосвязь движения электронов по цепи дыхательных ферментов и протонов и протонов через мембрану митохондрий в конечном итоге на кислород представляет собой центральное звено дыхания и сопряженного с ним фосфорилирования. В этом процессе ведущую роль играет энергия возбужденных электронов, благодаря которой происходит перемещение («перекачивание») протонов с матрикса на наружную поверхность мембраны митохондрий, а электроны переносятся на убихинон к внутренней поверхности мембраны. Передвижение протонов и электронов приводит к накоплению протонов на наружной поверхности мембраны и уменьшению их в матриксе, что обусловливает возникновение положительного заряда на наружной поверхности мембраны и отрицательного на её внутренней поверхности. Так возникает электрохимический потенциал, состоящий из разницы концентрации ионов Н+ и разницы электрического потенциала. Энергия электрохимического потенциала используется для биосинтеза АТФ. При этом протоны проходят через протонный канал F0 мембраны митохондрий к белковому комплексу F1, что приводит к уменьшению величины электрохимического потенциала и трансформации его энергии для образования АТФ из АДФ (см. таблицу «Трансмембранный перенос электронов и протонов») и неорганического фосфата. Энергия электрохимического потенциала используется также для транспорта ионов, в частности, ионов Мg2+, Са2+, что очень важно для функции нервной системы и мышц.