Строение, свойства и функции белков. Простые и сложные белки. Гемопротеины
..pdf
3. Гликопротеины
Для собственно гликопротеинов характерно низкое содержание углеводов. Углеводный остаток является олигосахаридм, имеет нерегулярное строение и содержит маннозу, галак-
тозу, глюкозу, и их аминопроизводные, также N-ацетилнейраминовую кислоту. Олигосахарид присоединен к аминокислотам белковой цепи
либо N-гликозидной связью – к амидному азоту аспарагина, либо О-гликозидной связью – к гидроксигруппе остатков серина, треонина, гидроксилизина.
Функцией гликопротеинов являются: 1. Структурная – клеточная стенка бактерий, костный
матрикс, например, коллаген, эластин.
2. Защитная – например, антитела, интерферон, факторы свертывания крови (протромбин, фибриноген).
3. Транспортная – перенос веществ в крови и через мембраны, например, трансферрин, транскортин, альбумин, Na+,К+ -АТФаза.
4. Гормональная – гонадотропный, адренокортикотропный и тиреотропный гормоны.
5. Ферментативная – холинэстераза, нуклеаза.
6. Рецепторная – присоединение эффектора приводит к изменению конформации белка-ре- цептора, что вызывает внутриклеточный ответ.
Протеогликаны Другая группа гликопротеинов – протеогликаны – характеризуется наличием
полисахаридов, состоящих из повторяющихся дисахаридных остатков. Дисахариды включают в себя уроновую кислоту и аминосахар. Многократно дублируясь, дисахариды образуют олиго- и полисахаридные цепи – гликаны. В литературе встречаются другие названия – кислые гетерополисахариды (т.к. имеют много кислотных групп), гликозаминогликаны (содержат аминогруппы).
Эти молекулы входят в состав протеогликанов – сложных белков, функцией которых является заполнение межклеточного пространства и удержание здесь воды, также они выступают как смазочный и структурный компонент суставов и других тканевых структур.
Углеводная часть, аналогично с гликопротеинами, связывается с белком через остатки серина и аспарагина.
Основными представителями структурных гликозаминогликанов является гиалуроновая кислота, хондроитинсульфаты, кератансульфаты и дерматансульфаты. Гепарин используется в антикоагулянтной системе крови. По функции протеогликаны особенно значимы для межклеточного пространства, особенно соединительной ткани, в которое погружены коллагеновые волокна. При помощи электронной
микроскопии выяснено, что они имеют древовидную структуру – в центре находится гиалуроновая кислота, которая через связующие белки присоединяет многочисленные "веточки" из хондроитинсульфатов,
кератансульфатов, дерматансульфатов. Молекулы гликанов весьма гидрофильны, создают сетчатый желеподобный матрикс и заполняют пространство между клетками, являясь преградой для крупных молекул и микроорганизмов.
ЛИПОПРОТЕИНЫ К липопротеинам, строго говоря, принадлежат только белки, содержащие
ковалентно связанные липиды. Однако традиционно к липопротеинам относят и надмолекулярные образования, выполняющие транспортную функцию и состоящие из белков и молекул всех классов липидов – транспортные липопротеины.
Структуру транспортных липопротеинов можно сравнить с орехом, у которых имеется скорлупа и ядро. "Скорлупа" липопротеина является гидрофильной, ядро – гидрофобное. Ядро формируют неполярные эфиры холестерола и триацилглицеролы. В поверхностном слое ("скорлупе") находятся фосфолипиды, свободный холестерол, белки.
Белки в липопротеинах называются апобелками, их выделяют несколько видов: А, В, С и D. В каждом типе липопротеинов преобладают соответствующие ему апобелки.
Выделяют четыре основных класса липопротеинов: хиломикроны (ХМ),
липопротеины высокой плотности (ЛПВП, альфа-липопротеины, альфа-ЛП), липопротеины низкой плотности (ЛПНП, бета-липопротеины, бета-ЛП), Аминокислоты и белки 28 липопротеины очень низкой плотности (ЛПОНП, пре-бета-липопротеины, пре-
бета-ЛП).
Липопротеины различаются по составу, т.е. по соотношению триацилглицеролов, холестерола и его эфиров, фосфолипидов, белков
МЕТАЛЛОПРОТЕИНЫ Металлопротеины, кроме белка, содержат ионы одного или нескольких
металлов. Металлопротеины часто являются ферментами. Ионы металлов соединены координационными связями с функциональными группами белка и выполняют следующие функции:
участвуют в ориентации субстрата в активном центре фермента, входят в состав активного центра фермента и участвуют в катализе, например,
служат акцепторами электронов на определенной стадии ферментативной реакции.
К металлопротеинам, например, относятся белки, содержащие:
медь – цитохромоксидаза, в комплексе с другими ферментами дыхательной цепи митохондрий участвует в синтезе АТФ,
железо – ферритин, депонирующий железо в клетке, трансферрин, переносящий железо в крови, сукцинатдегидрогеназа (фермент цикла трикарбоновых кислот),
цинк – алкогольдегидрогеназа, обеспечивающая метаболизм этанола и других спиртов, лактатдегидрогеназа, участвующая в метаболизме молочной кислоты, карбоангид-раза, образующая угольную кислоту из CO2 и H2O, щелочная фосфатаза, гидролизующая фосфорные эфиры различных соединений.
селен – тиреопероксидаза, участвующая в синтезе гормонов щитовидной железы, антиоксидантный фермент глутатионпероксидаза,
кальций – альфа-амилаза слюны и панкреатического сока, гидролизующая крахмал.
ФОСФОПРОТЕИНЫ Фосфопротеины – это белки, в которых присутствует фосфатная группа, она
связывается с пептидной цепью через остатки тирозина, серина, треонина (т.е. тех аминокислот, которые содержат ОН-группу).
Фосфорная кислота может выполнять:
1. Структурную роль, придавая заряд, растворимость и изменяя свойства белка, например, в казеине молока, яичном альбумине.
2. Функциональную роль. В клетке присутствует много белков, которые связаны с фосфатом не постоянно, а в зависимости от активности метаболизма. Белок может многократно переходить в фосфорилированную или в дефосфорилированную форму, что играет регулирующую роль в его работе. Например, 1) ферменты гликогенсинтаза и гликогенфосфорилаза (см "Регуляция активности ферментов"), 2) гистоны в фосфорилированном состоянии менее прочно связываются с ДНК и активность генома возрастает.
№11. Строение и функции миоглобина.
Миоглобин является одиночной полипептидной цепью, состоит из 153 аминокислот с молекулярной массой 17 кДа и по структуре сходен с β-цепью гемоглобина. Белок локализован в мышечной ткани. Миоглобин обладает более высоким сродством к кислороду по сравнению с гемоглобином. Это свойство обусловливает функцию миоглобина – депонирование кислорода в мышечной клетке и использование его только при значительном уменьшении парциального давления О2 в мышце (до 1-2 мм рт.ст).
Кривые насыщения кислородом показывают отличия миоглобина и гемоглобина: Одно и то же 50%-е насыщение достигается при совершенно разных концентрациях кислорода – около 26 мм рт.ст. для гемоглобина и 5 мм рт.ст. для миоглобина, При парциальном давлении кислорода от 26 до 40 мм рт.ст. (в тканях)
гемоглобин насыщен на 50-80%, тогда как миоглобин – почти на 100%. Таким образом, миоглобин остается оксигенированным до того момента, пока количество кислорода в клетке не снизится до предельных величин. Только после этого начинается отдача кислорода для реакций метаболизма.
№12. Строение и функции гемоглобина. Т- и R-формы гемоглобина.
СТРОЕНИЕ ГЕМОГЛОБИНА Гемоглобин представляет собой белок, включающий 4 гемсодержащие белковые
субъединицы. Протомеры соединяются друг с другом благодаря образованию гидрофобных, ионных, водородных связей. При этом они взаимодействуют не произвольно, а определенным участком – контактной поверхностью. Этот процесс высокоспецифичен, контакт происходит одновременно в десятках точек по принципу комплементарности. Взаимодействие осуществляют разноименно заряженные группы, гидрофобные участки, неровности на поверхности белка.
Белковые субъединицы в нормальном гемоглобине могут быть представлены различными типами полипептидных цепей: α ("альфа"), β ("бета"), ε ("'эпсилон"), γ ("гамма"), δ ("дельта"), ξ ("кси"). В состав молекулы гемоглобина входят по две цепи двух разных типов.
Гем соединяется с белковой субъединицей, во-первых, через остаток гистидина координационной связью железа, во-вторых, через гидрофобные связи пиррольных колец и
гидрофобных аминокислот. Гем располагается как бы "в кармане" своей цепи и формируется гемсодержащий протомер.
НОРМАЛЬНЫЕ И ПАТОЛОГИЧЕСКИЕ ФОРМЫ ГЕМОГЛОБИНА
Нормальные формы Существует несколько нормальных вариантов гемоглобина:
HbР – примитивный гемоглобин, содержит 2ξ- и 2ε-цепи, встречается в эмбрионе между 7-12 неделями жизни,
HbF – фетальный гемоглобин, содержит 2α и 2γ-цепи, появляется через 12 недель внутриутробного развития и является основным после 3 месяцев, HbA – гемоглобин взрослых, доля составляет 98%, содержит 2α и 2β-цепи, у
плода появляется через 3 месяца жизни и к рождению составляет 80% всего гемоглобина,
HbA2 – гемоглобин взрослых, доля составляет 2%, содержит 2α и 2δ-цепи, HbO2 – оксигемоглобин, образуется при связывании кислорода в легких, в
легочных венах его 94-98% от всего количества гемоглобина,
HbCO2 – карбогемоглобин, образуется при связывании углекислого газа в тканях, в венозной крови составляет 15-20% от всего количества гемоглобина.
Патологические формы
HbS – гемоглобин серповидно-клеточной анемии. При этом нарушении в ДНК в результате точковой мутации триплет ЦТТ заменен на триплет ЦАТ, что влечет за собой включение в 6-м положении β-цепи вместо глутамата аминокислоты валина. Изменение свойств β-цепи влечет изменение свойств всей молекулы и формирование на поверхности гемоглобина "липкого" участка. При дезоксигенации гемоглобина участок "раскрывается" и связывает одну молекулу гемоглобина S с другими подобными. Результатом является полимеризация гемоглобиновых молекул и образование крупных белковых тяжей, вызывающих деформацию эритроцита и при прохождении капилляров гемолиз.
РЕГУЛЯЦИЯ ПРИСОЕДИНЕНИЯ КИСЛОРОДА К ГЕМОГЛОБИНУ Кооперативное взаимодействие Взаимовлияние протомеров олигомерного белка друг на друга называется
кооперативное взаимодействие.
В легких такое взаимодействие субъединиц гемоглобина повышает его сродство к кислороду и ускоряет присоединение кислорода в 300 раз. В тканях идет обратный процесс, сродство снижается и ускорение отдачи кислорода также 300-кратное.
Объясняется такой феномен тем, что в легких при присоединении первой молекулы кислорода к железу (за счет 6-й координационной связи) атом железа втягивается в плоскость гема, кислород остается вне плоскости. Это вызывает перемещение участка белковой цепи и изменение конформации первого протомера. Такой измененный
протомер влияет на другие субъединицы и облегчает связывание кислорода со второй субъединицей. Это меняет конформацию второй субъединицы, облегчая присоединение последующих молекул кислорода и изменение других протомеров.
Дезоксиформа гемоглобина обозначается как Т-форма, напряженная (англ. tense), она обладает существенно более низким сродством к кислороду. Оксигенированная форма, или
R-форма (англ. relaxed), обладает высоким сродством к кислороду. Источник: Тимин 328 стр
№13. Аллостерические эффекты гемоглобина: кооперативный эффект, эффект Бора, эффект 2,3-дифосфоглицерата.Механизмы, физиологическое значение.
(ответ не из лекций Тимина)
Кооперативное взаимодействие
Взаимовлияние протомеров олигомерного белка друг на друга называется
кооперативное взаимодействие.
В легких такое взаимодействие субъединиц гемоглобина повышает его сродство к кислороду и ускоряет присоединение кислорода в 300 раз. В тканях идет обратный процесс, сродство снижается и ускорение отдачи кислорода также 300-кратное.
Объясняется такой феномен тем, что в легких при присоединении первой молекулы кислорода к железу (за счет 6-й координационной связи) атом железа втягивается в плоскость гема, кислород остается вне плоскости. Это вызывает перемещение участка белковой цепи и изменение конформации первого протомера. Такой измененный протомер влияет на другие субъединицы и облегчает связывание кислорода со второй субъединицей. Это меняет конформацию второй субъединицы, облегчая присоединение последующих молекул кислорода и изменение других протомеров.
Изменение рН среды
Влияние рН на сродство гемоглобина к кислороду носит название эффекта Бора. При закислении среды сродство снижается, при защелачивании – повышается.
При повышении концентрации протонов (закисление среды) в тканях возрастает освобождение кислорода из оксигемоглобина. В легких после удаления угольной кислоты (в виде СО2) из крови и одновременном увеличении концентрации кислорода высвобождаются ионы Н+ из гемоглобина.Изменение сродства гемоглобина к кислороду в тканях и в легких при изменении концентрации ионов H+ и О2 обусловлено конформационными перестройками глобиновой части молекулы. В тканях молекула О2 отрывается от железа и ионы водорода присоединяются к остаткам гистидина (глобиновой части), образуя восстановленный гемоглобин (H-Hb) с низким сродством к кислороду. В легких поступающий в больших количествах кислород "вытесняет" ион водорода из связи с остатком гистидина гемоглобиновой молекулы
Роль 2,3-дифосфоглицерата
2,3-Дифосфоглицерат образуется в эритроцитах из 1,3-дифосфоглицерата, промежуточного метаболита гликолиза, в реакциях, получивших название шунт Раппопорта.2,3-Дифосфоглицерат располагается в центральной полости тетрамера дезоксигемоглобина и связывается с β-цепями, образуя поперечный солевой мостик между атомами кислорода 2,3-дифосфоглицерата и аминогруппами концевого валина обеих β-цепей, также аминогруппами радикалов лизина и гистидина.Функция 2,3-дифосфоглицерата заключается в снижении сродства гемоглобина к кислороду, что имеет особенное значение при подъеме на высоту и при нехватке кислорода во вдыхаемом воздухе. В этих условиях связывание кислорода с гемоглобином в легких не нарушается, так как концентрация его относительно высока. Однако в тканях за счет 2,3- дифосфоглицерата отдача кислорода возрастает в 2 раза
