
- •Гидродинамика
- •Вопросы с выводом уравнений
- •Вывод уравнения неразрывности. Какой вид имеет это уравнение при стационарном течении несжимаемой среды?
- •Вывод уравнения неразрывности для неустановившегося потока жидкости.
- •Вывод уравнения Навье-Стокса для одномерного движения. Каков физический смысл слагаемых?
- •Подобное преобразование уравнений Навье-Стокса. Физический смысл критериев подобия.
- •Проведите подобное преобразование уравнений Навье-Стокса для установившегося течения с получением обобщенных переменных (критериев гидродинамического подобия).
- •Преобразование уравнений Навье-Стокса для покоящейся жидкости. (Уравнения Эйлера, основное уравнение гидростатики, закон Паскаля).
- •Вывод дифференциальных уравнений Эйлера для течения идеальной жидкости. Чем отличается идеальная жидкость от реальной?
- •Вывод дифференциальных уравнений Эйлера равновесия жидкости.
- •Выведите основное уравнение гидростатики. Назовите практические приложения этого уравнения.
- •Вывод уравнения для распределения скорости по радиусу трубы при стационарном ламинарном течении.
- •Вывод уравнения неразрывности. Получите из уравнения неразрывности уравнение постоянства расхода для канала (трубопровода) с переменным поперечным сечением.
- •Вывод уравнения для расчета коэффициента гидравлического трения при ламинарном движении жидкости в трубе круглого поперечного сечения.
- •Вывод уравнения Бернулли для идеальной жидкости. Приведите примеры практического использования этого уравнения.
- •Вывод уравнения Бернулли для идеальной жидкости. Опишите особенности движения реальной жидкости. Приведите вид уравнения Бернулли для реальной жидкости. Каков его энергетический смысл?
- •Вывод уравнения, представляющего энергетический баланс движения идеальной жидкости. Каков физический смысл слагаемых этого уравнения?
- •Напор насоса, его энергетический смысл. Вывод формулы для расчета напора проектируемого к установке насоса.
- •Напор насоса, его энергетический смысл. Вывод формулы для расчёта напора насоса через показания манометра и вакуумметра.
- •Вывод формулы для расчета высоты всасывания насоса. От каких факторов зависит допустимая высота всасывания насосов? Ответ обоснуйте анализом формулы для расчета высоты всасывания.
- •Вопросы без вывода
- •Закон внутреннего трения Ньютона, приведите его вид с необходимыми пояснениями. Динамический и кинематический коэффициенты вязкости.
- •Что такое гидравлический радиус и эквивалентный диаметр? Расчет эквивалентного диаметра в канале с некруглым поперечным сечением. Приведите примеры.
- •Расчет диаметра трубопровода, выбор расчетных скоростей потока и примерные численные их значения для капельных жидкостей, газов, паров.
- •Определение гидравлического сопротивления в трубопроводах и аппаратах. Как определяются потери напора на трение при турбулентном движении?
- •Изобразите графически и сопоставьте зависимости между производительностью и напором центробежного и поршневого насоса.
- •Характеристика центробежного насоса и характеристика сети. Покажите, как определяется напор и мощность насоса при работе его на данную сеть.
- •Как влияет температура перекачиваемой жидкости на предельную высоту всасывания насосов? Ответ обоснуйте анализом формулы для расчёта высоты всасывания.
- •Рабочие характеристики центробежного и поршневого насосов, сопоставьте эти насосы по производительности, напору и кпд.
- •Конструкции аппаратов
- •Какие вы знаете насосы объемного типа? Изобразите схему устройства и опишите действие одного из них.
- •Изобразите схему устройства и опишите действие поршневого насоса, сопоставив его с насосами других типов.
- •Изобразите схему устройства и опишите действие плунжерного насоса, сопоставив его с насосами других типов.
- •Изобразите схему устройства и опишите действие плунжерного насоса двойного действия, сопоставив его с плунжерным насосом простого действия.
- •Изобразите схему устройства и опишите действие мембранного (диафрагмового) поршневого насоса, назвав области его применения.
- •Изобразите схему устройства и опишите действие поршневого насоса двойного действия, сопоставив его с поршневым насосом простого действия.
- •Изобразите схему устройства и опишите действие монтежю, сопоставив его с насосами других типов и назвав области применения.
- •Изобразите схему устройства и опишите действие центробежного насоса, сопоставив его с насосами других типов.
- •Сопоставьте достоинства и недостатки центробежных и поршневых насосов, назвав основные области их применения.
- •Изобразите схему устройства и опишите действие одноступенчатого центробежного насоса, сопоставив его с многоступенчатым центробежным насосом.
- •Изобразите схему устройства и опишите действие центробежного и осевого (пропеллерного) насосов; сопоставьте их и назовите преимущественные области применения.
- •Изобразите схему устройства и опишите действие осевого (пропеллерного) насоса, сопоставив его с насосами других типов.
- •Теплообмен
- •Вопросы с выводом
- •Потенциал переноса энергии и массы. Вывод уравнения переноса.
- •Молекулярный перенос:
- •Конвективный перенос:
- •Вывод дифференциального уравнения конвективного теплообмена Фурье-Кирхгофа.
- •Вывод дифференциального уравнения конвективного теплообмена, описывающего распределение температур в движущейся жидкости для нестационарного процесса.
- •Перенос тепла конвекцией. Уравнение теплоотдачи. Подобное преобразование дифференциального уравнения конвективного теплообмена Фурье-Кирхгофа. Критерии Фурье, Нуссельта, Пекле, Прандтля.
- •Вывод дифференциального уравнения теплопроводности для установившегося процесса (из уравнения Фурье-Кирхгофа).
- •Вывод дифференциального уравнения теплопроводности для неустановившегося процесса (из уравнения Фурье-Кирхгофа). Каковы единицы измерения теплопроводности и физический смысл коэффициента?
- •Вывод уравнения аддитивности термических сопротивлений при теплопередаче для плоской стенки.
- •Вывод уравнения для расчета средней движущей силы процесса теплопередачи при переменных температурах теплоносителей вдоль поверхности теплообмена при противотоке теплоносителей.
- •Вывод уравнения для расчета движущей силы теплопередачи при переменных температурах теплоносителей вдоль поверхности теплообмена.
- •Вопросы без вывода
- •Механизмы переноса энергии в форме теплоты в жидкостях и газах. Феноменологический закон переноса энергии Фурье.
- •Каковы достоинства и недостатки использования топочных газов в качестве теплоносителей для подвода тепла?
- •Температурное поле и температурный градиент.
- •Порядок расчёта площади поверхности теплопередачи теплообменников. Приведите соответствующие пояснения и обозначения, входящих в формулы величин.
- •Опишите молекулярный механизм переноса энергии. Приведите уравнение для удельного потока теплоты.
- •Определение толщины слоя тепловой изоляции.
- •Взаимное направление движения теплоносителей. Сравнение прямотока с противотоком.
- •Физический смысл тепловых критериев Нуссельта и Прандтля. Назовите примерные численные значения критерия Прандтля для газов и капельных жидкостей.
- •Как определяется количество теплоты, передаваемой лучеиспусканием при взаимном излучении двух тел?
- •Уравнения тепловых балансов при изменении и без изменения фазового состояния систем.
- •Напишите уравнения теплопередачи и теплоотдачи. Что является движущими силами этих процессов? Каковы единицы измерения и физический смысл коэффициентов теплоотдачи и теплопередачи?
- •Определение потерь тепла стенками аппаратов в окружающую среду.
- •Графически изобразите зависимости коэффициента теплоотдачи при кипении от разности температур между стенкой и кипящей жидкостью и от удельной тепловой нагрузки. Опишите основные режимы кипения.
- •Как осуществляется отвод конденсата при использовании водяного пара в качестве теплоносителя? Каково назначение и принципы действия конденсатоотводчиков?
- •Назовите и сопоставьте друг с другом основные теплоносители, используемые в химической промышленности для отвода теплоты.
- •Назовите и сопоставьте друг с другом основные теплоносители, используемые в химической промышленности для подвода теплоты.
- •Применение высокотемпературных промежуточных теплоносителей. Назовите области и способы их применения. Приведите примеры таких теплоносителей.
- •Взаимное излучение тел. Как определяется коэффициент взаимного излучения?
- •Влияние взаимного направления движения теплоносителей на среднюю движущую силу процесса. В каких случаях средняя движущая сила не зависит от взаимного направления потоков?
- •Определение температуры стенок теплообменных аппаратов. Для каких целей требуется знать температуры стенок в ходе расчета теплообменных аппаратов?
- •Теплоотдача при конденсации (описание процесса). Что такое пленочная и капельная конденсация? От каких параметров зависит коэффициент теплоотдачи при конденсации.
- •Теплоотдача при кипении (описание процесса). Общий вид уравнений для определения коэффициента теплоотдачи при кипении.
- •Конструкции апааратов
- •Приведите схемы обогрева аппаратов «острым» и «глухим» паром.
- •Объясните принцип действия конденсатоотводчика. Приведите схему устройства.
- •Изобразите схему устройства кожухотрубного теплообменника. Укажите достоинства и недостатки этого аппарата.
- •Изобразите многоходовой кожухотрубный теплообменник по межтрубному пространству
- •Изобразите любую конструкцию многоходового кожухотрубного теплообменника. Чем отличаются одноходовые теплообменники от многоходовых?
- •Какие Вы знаете конструкции теплообменников с компенсацией температурных удлинений труб и кожуха. Изобразите любую конструкцию по вашему выбору.
- •Изобразите схему устройства кожухотрубного и двухтрубного («труба в трубе») теплообменников. Сопоставьте достоинства и недостатки этих аппаратов и назовите области их применения.
- •Изобразите схему устройства и опишите принцип действия теплообменника "труба в трубе". Сопоставьте эти теплообменники с кожухотрубными.
- •Изобразите схему устройства и опишите принцип действия пластинчатого теплообменника для жидкостей. Сопоставьте достоинства и недостатки этого аппарата с кожухотрубным теплообменником.
- •Изобразите схему устройства спирального теплообменника. Укажите достоинства и недостатки этого аппарата.
- •Изобразите схему устройства и опишите принцип действия оросительных холодильников. Укажите их достоинства и недостатки.
- •Изобразите схему устройства и опишите принцип действия погружных (змеевиковых) теплообменников. Укажите их достоинства и недостатки, области применения.
- •Приведите схему устройства любого известного вам смесительного теплообменника.
- •Изобразите известные вам схемы устройства градирен. Для чего они используются?
Влияние взаимного направления движения теплоносителей на среднюю движущую силу процесса. В каких случаях средняя движущая сила не зависит от взаимного направления потоков?
Средняя движущая сила теплопередачи ( )— это величина, характеризующая разность температур между теплоносителями в теплообменнике. Она рассчитывается при изменении фазового состояния теплоносителей по формуле:
где
— большая разность температур между
теплоносителями,
— разность температур между
теплоносителями.
При изменении фазового состояния (например, конденсация или испарение), температура одного из теплоносителей остаётся постоянной из-за фазового перехода. В таком случае формула упрощается
ΔТф.п.—
температура фазового перехода
теплоносителя (например, температура
кипения или конденсации),
и
— температуры второго теплоносителя
на входе и выходе.
Влияние взаимного направления движения теплоносителей:
Прямоточное движение. Теплоносители движутся в одном направлении, температурные разности
и
изменяются неравномерно. В этом случае средняя движущая сила меньше, чем при противотоке.
Противоточное движение. Теплоносители движутся навстречу друг другу. Разность температур остаётся более равномерной по длине теплообменника, и средняя движущая сила больше. Это обеспечивает более эффективную теплопередачу.
Поперечное течение. Если движение теплоносителей перпендикулярно, средняя движущая сила рассчитывается как промежуточное значение между прямотоком и противотоком. Эффективность теплопередачи зависит от соотношения скоростей теплоносителей.
Направление движения не оказывает влияния, если:
Один из теплоносителей изменяет фазовое состояние (например, кипение или конденсация), а температура другого изменяется незначительно.
В этом случае
(например, конденсация пара на охлаждаемой стенке — температура пара постоянна, направление движения жидкости-охладителя не влияет.
Итого
Влияет: в случае, если оба теплоносителя имеют изменяющиеся температуры.
Не влияет: при фазовом переходе одного из теплоносителей, когда его температура остаётся постоянной.
Определение температуры стенок теплообменных аппаратов. Для каких целей требуется знать температуры стенок в ходе расчета теплообменных аппаратов?
Количество тепла, отдаваемое горячим теплоносителем:
Количество тепла, отдаваемое холодным теплоносителем:
Тогда
и
.
Следовательно:
В ряде случаем определение коэффициент теплоотдачи невозможно без знаний температуры более нагретой поверхности. Температуру стенки находят методом последовательного приближения.
Теплоотдача при конденсации (описание процесса). Что такое пленочная и капельная конденсация? От каких параметров зависит коэффициент теплоотдачи при конденсации.
Теплоотдача при конденсации насыщенных паров – это сложное явление одновременного переноса теплоты и массы. При конденсации насыщенного пара на охлаждаемой поверхности молекулы пара не только переносятся к охлаждаемой стенке вихрями турбулентного потока, но и создают еще собственное поступательное движение к стенке. Образовавшийся конденсат стекает по стенке, а к стенке подходит свежий пар. Чем холоднее стенка, тем интенсивнее конденсация.
На хорошо смачиваемых поверхностях капли конденсата, сливаясь друг с другом, образуют жидкую пленку, которая под действием сил тяжести стекает вниз. Такую конденсацию пара называют пленочной.
На плохо смачиваемой поверхности капли конденсата быстро стекают по поверхности стенки, не образую пленки. Это капельная конденсация.
Обобщенное уравнение для определения коэффициента теплоотдачи от конденсирующихся паров:
;
;
;
Коэффициент теплоотдачи зависит от большого числа различных факторов:
а) физических свойств жидкости;
б) скорости движения жидкости;
в) формы, размеров и ориентации в пространстве поверхности теплообмена;
г) величины температурного напора и т.п.
Тогда коэффициент теплоотдачи при конденсации пара равен: