Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка Теплообменники.doc
Скачиваний:
1
Добавлен:
23.06.2025
Размер:
1.34 Mб
Скачать

1.8 Спиральные теплообменные аппараты

Спиральные теплообменники получили в промышленности срав­нительно широкое распространение, что объясняется рядом важных преимуществ по сравнению с теплообменными аппаратами других типов. Спиральные теплообменники могут изготовляться из любого ру­лонного материала, подвергаемого холодной обработке и свариванию. Теплообменники компактны, их конструкция предусматривает возмож­ность полного противотока. Площадь поперечного сечения каналов по всей длине остается неизменной, и поток не имеет резких изменений направлений, благодаря чему загрязнение поверхности спиральных те­плообменников меньше, чем теплообменных аппаратов других типов, кроме того, ряд конструкций их позволяет проводить сравнительно легкую очистку в случае, не требующем для удаления осадка механи­ческого воздействия. Гидравлическое сопротивление спиральных теп­лообменников при одинаковой скорости движения жидкости меньше, чем у кожухотрубчатых.

Спиральные теплообменники различных конструкций нашли при­менение для систем жидкость-жидкость, для систем жидкость-пар в качестве конденсаторов, нагревателей и испарителей, для охлаждения и нагрева­ния парогазовых смесей. Спиральные те­плообменники специальной конструкции могут компоноваться с ректификационны­ми колоннами и применяться в качестве дефлегматоров. Одно из назначений спиральных тепло­обменников — нагревание и охлаждение высоковязких жидкостей. Так как вязкая жидкость проходит по одному каналу, то устраняется проблема равномерного рас­пределения вязкой жидкости по трубам.

Рисунок 26 - Схема движения жидкости в спиральном теплообменнике

Спиральный теплообменник представляет собой два спиральных канала, навитых из рулонного материала вокруг центральной разде­лительной перегородки — керна.

По видам уплотнения торцов каналы делятся на три основных типа:

1. Тупиковые каналы, каждый из которых заваривается с противопо­ложной стороны при помощи вставленной ленты. Такой способ уплотнения исключает возможность смешения теплоносителей при прорыве прокладки. После снятия крышек оба канала легко подвергаются чистке. Этот способ уплот­нения каналов наиболее распространен;

2. Глухие каналы, в которых канал заваривается на торцах с обеих сторон. Недостаток этого типа уплотнения за­ключается в невозможности чистки каналов;

3. Сквозные каналы, открытые с торцов. Уплотнение до­стигается при помощи манжет U-образного сечения или листового прокладочного материала. Каналы такого типа легко поддаются чистке; основной их недостаток заключается в возможности перетока теплоносителя из одного канала в другой.

Согласно ГОСТ 12067 навивка спиральных теплообменников производится из рулонной стали шириной от 0,2 до 1,5 м, поверхность нагрева теплообменников от 3,2 до 100 м2, ширина канала 8 или 12 мм, давление до 1 МПа (10 кгс/см2). Толщина стенок при давлении до 0,3 МПа - 2 мм, до 0,6 МПа - 3 мм.

Спиральные теплообменники выпускаются двух типов; тип 1 с тупиковыми каналами (с крышами) и тип 2 с глухими каналами (без крышек). Тип 1 выпускается в четырех исполнениях: горизонтальный теплообменник на лапах для жидкостей (рисунок 27г); горизонтальный теплообменник на цапфах для жидкостей (рисунок 27в); вертикальный теплообменник на цапфах для конденсации паров (рисунок 27б); вертикальный теплообменник на цапфах для парогазовой смеси (рисунок 27а). Цапфа - название цилиндрической части конца вала, которой он опирается при своем вращении. Нижняя цапфа вертикального вала называется также "пятою". В противоположность шейкам вала цапфа не подвергаются скручивающим усилиям, а только сгибающим и срезывающим. 

а - вертикальные на цапфах для парогазовых смесей; б - вертикальные на цапфах для конденсации пара; в - горизонтальные на цапфах для жидкостей; г - горизонтальные на лапах для жидкостей;

Рисунок 27- Спиральные теплообменники с тупиковыми каналами (тип 1)

Тип 2 выпускается в трех исполнениях: горизонтальный на лапах; горизонтальный на цапфах; вертикальный на лапах (рисунок 28).

Рисунок 28 - Вертикальный теплообменник на лапах с глухими каналами (тип 2)

Спиральные теплообменники изготовляют из углеродистой стали СтЗ и из легированных марок 12Х18Н10Т, 0Х18Н10Т и Х17Н12М2Т. Для изготовления крышек может применяться двухслойная сталь марок СтЗ+12Х18Н10Т и 20К + Х17Н13М2Т и др. В качестве прокладок применяют резину, паронит, фторопласт, ас­бестовый картон и др.

Теплообменники спиральные для жидкости состоят из корпуса спи­рали с тупиковыми каналами, двух плоских крышек по торцам с про­кладками, четырех штуцеров для входа и выхода теплоносителей, два из которых установлены в центральной части крышки, а два — в верхней части корпуса на коллекторах. Корпус спирали выполняется на лапах для установки непосредственно на фундаменте в горизонтальном ис­полнении или на цапфах для установ­ки в любом положении: вертикальном, горизонтальном и наклонном.

Принцип работы спиральных теп­лообменников для жидкостей заклю­чается в следующем: первый тепло­носитель поступает под давлением через штуцер на одной из крышек в камеру центровика, а затем по каналу спирали — в коллектор и через штуцер выходит из теплообменника. Второй теплоноситель через штуцер коллек­тора поступает в смежный канал спи­рали противотоком по отношению к первому теплоносителю и выходит через штуцер второй крышки. Спиральные теплообменники для конденсации паров изготовляют­ся только в вертикальном варианте и состоят из корпуса спирали с ту­пиковыми каналами, двух крышек (верхней — с конусом для подвода пара к каналам и нижней с прокладками для уплотнения каналов), че­тырех штуцеров для входа и выхода теплоносителей, два из которых установлены в крышках, а два — в боковых коллекторах, причем один из них для вывода конденсата установлен в нижней части коллектора.

Спиральные теплообменники для парогазовой смеси отличаются от теплообменников для конденсации паров только тем, что они имеют еще штуцер для выхода газов после отделения от них конденсата, ко­торый установлен в середине коллектора, на котором имеется штуцер для выхода конденсата. Вертикальное расположение каналов конденсаторов исключает об­разование пробок конденсата и гидравлические удары. Пар или паро­газовая смесь поступает в аппарат через штуцер большого диаметра одновременно в большинство каналов, кроме нескольких крайних на­ружных. Образующийся конденсат стекает по вертикальной стенке каналов, собирается в нижней части каналов теплообменника и стекает по спирали в штуцер для конденсата, расположенный у нижней стороны канала. Остатки не конденсировавшегося пара или парогазовой смеси проходят несколько наружных витков канала по спирали и после охлаждения отводятся через штуцер на коллекторе тупиковых каналов.

Гидравлическое сопротивление каналов по паровой стороне неве­лико вследствие достаточно большого поперечного сечения каналов, включенных на входе пара параллельно. Охлаждающая среда подается через наружный коллектор и движется по спиральному каналу к центру, откуда выводится через штуцер на нижней крышке. Спиральные теплообменники могут выполняться для движения теплоносителей по спиральному потоку, по поперечному, пересекаю­щему спираль потоку и по комбинированному потоку, сочетающему поперечный и спиральный поток. Конструктивное оформление таких теплообменников может быть разнообразным.

Зарубежные фирмы навивку спиральных теплообменников произ­водят из рулонного материала шириной от 0,1 до 1,8 м и толщиной от 2 до 8 мм. Диаметр сердечника (керна) 200... 300 мм. Ширина канала от 5 до 25 мм, поверхность нагрева выпускаемых теплообменников от 0,5 до 160 м2. Для получения больших поверхностей теплообменники могут быть соединены в блоки.

За рубежом спиральные теплообменники изготовляют из углеродис­той и коррозионностоикой сталей, хастеллоя В и С, никеля и никелевых сплавов, алюминиевых сплавов и титана. При относительно высоких давлениях в каналах часть зарубежных фирм в целях снижения веса и придания достаточной прочности произ­водит навивку теплообменников из стали разной толщины. Внутренние витки с меньшим радиусом навиваются из более тонкого материала, а наружные витки с большим радиусом — из металла большей толщины. Полотнища разной толщины свариваются под углом, для того чтобы более жесткий шов не мешал навивке спирали.

В ряде случаев спиральные теплообменники конструируют с расче­том на применение анодной антикоррозионной защиты или защитных покрытий.