
- •Уральский государственный технический университет - УПИ
- •- НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ -
- •Проецирование – процесс получения на чертеже достоверного изображения, по которому можно представить форму
- •Виды проецирования
- •Проекция – изображение, полученное проецированием объекта на плоскость или какую-либо другую поверхность.
- •Ортогональные проекции точки
- •Ортогональные проекции прямой линии
- •Ортогональное проецирование прямых линии частного положения
- •1. Прямые частного положения. Проецирующие прямые
- •Фронтально-проецирующая прямая
- •2. Прямые частного положения. Прямые уровня
- •фронтальная прямая, фронталь f
- •Прямые линии общего
- •ОРТОГОНАЛЬНЫЕ ПРОЕКЦИИ
- •Следы плоскости – линии пересечения данной плоскости с плоскостями проекций
- •ОТНОСИТЕЛЬНОЕ ПОЛОЖЕНИЕ ПЛОСКОСТЕЙ
- •ПЛОСКОСТИ ЧАСТНОГО ПОЛОЖЕНИЯ
- •Фронтальная плоскость уровня b I| П2
- •2. Проецирующие плоскости - это плоскости
- •Фронтально проецирующая плоскость ┴ П2
- •ПОВЕРХНОСТИ
- •Образующая
- •СПОСОБЫ ЗАДАНИЯ ПОВЕРХНОСТЕЙ
- •ОЧЕРК ПОВЕРХНОСТИ
- •Поверхность
- •Гранные поверхности
- •Пирамида – образуется при движении прямолинейной образующей по ломаной направляющей. Все образующие имеют
- •ПРОСТЕЙШИЕ ПОВЕРХНОСТИ
- •ЦИЛИНДРИЧЕСКАЯ ПОВЕРХНОСТЬ
- •ПОВЕРХНОСТЬ КОНУСА
- •ПОВЕРХНОСТЬ CФЕРЫ
- •ТОРОВАЯ
- •ТОРОВАЯ
- •ТОРОВАЯ ПОВЕРХНОСТЬ
- •СЕЧЕНИЯ ПОВЕРХНОСТЕЙ
- •СЕЧЕНИЕ ГРАННОЙ ПОВЕРХНОСТИ
- •СЕЧЕНИЯ ЦИЛИНДРА ВРАЩЕНИЯ
- •СЕЧЕНИЯ КОНУСА ВРАЩЕНИЯ
- •СЕЧЕНИЯ КОНУСА ВРАЩЕНИЯ
- •СЕЧЕНИЯ СФЕРЫ
- •ПЕРЕСЕЧЕНИЕ
- •• Линия пересечения поверхностей -
- •-Линия пересечения многогранника и поверхности вращения - сочетание плоских кривых линий (парабола, гипербола,
- •Алгоритм решения задач
- •2. Определить характерные точки линии пересечения
- •Способ вспомогательных секущих
- •Повторение пунктов 1, 2, 3 – n раз
- •Задача.
- •Задача.
- •Цилиндр является фронтально проецирующей поверхностью, так как все его образующие фронтально проецирующие прямые.
- •Характерные точки
- •Характерные точки
- •Построить линию пересечения
- •Построить линию пересечения четверти тора кольца и цилиндра
- •СПОСОБ
- •• ОСНОВНОЙ ПРИНЦИП
- •СПОСОБ КОНЦЕНТРИЧЕСКИХ СФЕР
- •Построить линию пересечения поверхностей
- •Построить линию пересечения поверхностей
- •СЕЧЕНИЯ СФЕРЫ
- •Пересечение поверхности и прямой
- •Пересечение поверхности вращения и
- •Пересечение прямой и гранной поверхности
- •РАЗВЕРТКИ
- •РАЗВЕРТКА ПОВЕРХНОСТИ – ЭТО ПЛОСКАЯ ФИГУРА, КОТОРАЯ ПОЛУЧАЕТСЯ СОВМЕЩЕНИЕМ ВСЕЙ БОКОВОЙ ПОВЕРХНОСТИ ОБЪЕКТА
- •РАЗВЕРТКИ
- •1. ТОЧНЫЕ – ПОСТРОЕННЫЕ ГРАФОАНАЛИТИЧЕСКИМ СПОСОБОМ Развертка цилиндра прямого кругового
- •2.ПРИБЛИЖЕННЫЕ – ВЫПОЛНЕННЫЕ СПОСОБОМ АППРОКСИМАЦИИ РАЗВЕРТКИ РАЗВЕРТЫВАЕМЫХ ПОВЕРХНОСТЕЙ (ЦИЛИНДРЫ, КОНУСЫ)
- •АППРОКСИМАЦИЯ
- •Деление
- •Развертка конуса способом графоаналитическим
- •Развертка переходника
- •Развертка конуса с одной плоскостью симметрии
- •Способ триангуляции
- •Способ раскатки
- •Развертка цилиндра наклонного
- •Развертка сферы
- •Аксонометрические проекции
- ••Аксонометрические проекции – наглядное изображение объекта, полученное параллельным проеци-рованием его на одну плоскость
- •Выберем в пространстве прямоугольную систему координат XYZ и точку А, положение которой относительно
- ••Если проецирующие лучи перпендику- лярны плоскости картины К – аксонометрия прямоугольная .
- ••При проецировании оси координат и единичные отрезки искажаются.
- •ВИДЫ АКСОНОМЕТРИЧЕСКИХ ПРОЕКЦИЙ
- •Прямоугольная изометрия
- •Прямоугольная диметрия
- •Фронтальная диметрия
- •Фронтальная изометрия
- •Построение проекций плоских фигур в аксонометрии
- •Построение проекций окружности в
- •Если изометрическую проекцию выполняют без искажения по
- •Проекции окружности в прямоугольной изометриии
- •Проекции окружности в прямоугольной диметрии
- •Прямоугольная диметрия
- •Построение проекций окружности во фронтальной диметрии
- •Фронтальная диметрия

Развертка сферы
•Используем двойную аппроксимацию
•Разделим сферу на несколько горизонтальных поясов
•Каждый пояс аппроксимируем усеченным конусом
•Усеченный конус аппроксимируем вписанной усеченной пирамидой
118


Аксонометрические проекции
120

•Аксонометрические проекции – наглядное изображение объекта, полученное параллельным проеци-рованием его на одну плоскость проекций вместе с осями прямоугольных координат, к которым объект привязан.
121

Выберем в пространстве прямоугольную систему координат XYZ и точку А, положение которой относительно осей координат определено.
1.Параллельными лучами спроецируем оси координат, единичные отрезки Lx, Ly, Lz на осях координат, точку А на плоскость К.
122

•Если проецирующие лучи перпендику- лярны плоскости картины К – аксонометрия прямоугольная .
•Если проецирующие лучи наклонены к плоскости картины К под произвольным углом - аксонометрия косоугольная.
123

•При проецировании оси координат и единичные отрезки искажаются.
•Отношение линейной величины изображения к натуральной величине
– КОЭФФИЦИЕНТ ИСКАЖЕНИЯ
•Lx1 / L x = Kx –коэффициент искажения по оси х;
•LY1/ LY= KY–коэффициент искажения по оси у;
•Lz1/ L z = Kz–коэффициент искажения по оси z.
124

ВИДЫ АКСОНОМЕТРИЧЕСКИХ ПРОЕКЦИЙ
•Изометрия – равные коэффициенты искажения по трем осям Кх=КY=Кz
•Диметрия – равные коэффициенты искажения по двум осям Кх=Кz≠ КY
•Триметрия – разные коэффициенты искажения по трем осям.
125

Прямоугольная изометрия
•Кх=Ку=Кz=0,8≈1
126

Прямоугольная диметрия
•Кx=Кz=0,94≈1
•Ку=0,47≈0,5
127