
- •Acknowledgments
- •About the Authors
- •About the Technical Editors
- •Contents at a Glance
- •Contents
- •Foreword
- •Introduction
- •Overview of the CISSP Exam
- •The Elements of This Study Guide
- •Study Guide Exam Objectives
- •Objective Map
- •Reader Support for This Book
- •Security 101
- •Confidentiality
- •Integrity
- •Availability
- •Protection Mechanisms
- •Security Boundaries
- •Third-Party Governance
- •Documentation Review
- •Manage the Security Function
- •Alignment of Security Function to Business Strategy, Goals, Mission, and Objectives
- •Organizational Processes
- •Organizational Roles and Responsibilities
- •Security Control Frameworks
- •Due Diligence and Due Care
- •Security Policy, Standards, Procedures, and Guidelines
- •Security Policies
- •Security Standards, Baselines, and Guidelines
- •Security Procedures
- •Threat Modeling
- •Identifying Threats
- •Determining and Diagramming Potential Attacks
- •Performing Reduction Analysis
- •Prioritization and Response
- •Supply Chain Risk Management
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Job Descriptions and Responsibilities
- •Candidate Screening and Hiring
- •Onboarding: Employment Agreements and Policies
- •Employee Oversight
- •Compliance Policy Requirements
- •Privacy Policy Requirements
- •Understand and Apply Risk Management Concepts
- •Risk Terminology and Concepts
- •Asset Valuation
- •Identify Threats and Vulnerabilities
- •Risk Assessment/Analysis
- •Risk Responses
- •Cost vs. Benefit of Security Controls
- •Countermeasure Selection and Implementation
- •Applicable Types of Controls
- •Security Control Assessment
- •Monitoring and Measurement
- •Risk Reporting and Documentation
- •Continuous Improvement
- •Risk Frameworks
- •Social Engineering
- •Social Engineering Principles
- •Eliciting Information
- •Prepending
- •Phishing
- •Spear Phishing
- •Whaling
- •Smishing
- •Vishing
- •Spam
- •Shoulder Surfing
- •Invoice Scams
- •Hoax
- •Impersonation and Masquerading
- •Tailgating and Piggybacking
- •Dumpster Diving
- •Identity Fraud
- •Typo Squatting
- •Influence Campaigns
- •Awareness
- •Training
- •Education
- •Improvements
- •Effectiveness Evaluation
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Planning for Business Continuity
- •Project Scope and Planning
- •Organizational Review
- •BCP Team Selection
- •Resource Requirements
- •Legal and Regulatory Requirements
- •Business Impact Analysis
- •Identifying Priorities
- •Risk Identification
- •Likelihood Assessment
- •Impact Analysis
- •Resource Prioritization
- •Continuity Planning
- •Strategy Development
- •Provisions and Processes
- •Plan Approval and Implementation
- •Plan Approval
- •Plan Implementation
- •Training and Education
- •BCP Documentation
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Categories of Laws
- •Criminal Law
- •Civil Law
- •Administrative Law
- •Laws
- •Computer Crime
- •Intellectual Property (IP)
- •Licensing
- •Import/Export
- •Privacy
- •State Privacy Laws
- •Compliance
- •Contracting and Procurement
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Defining Sensitive Data
- •Defining Data Classifications
- •Defining Asset Classifications
- •Understanding Data States
- •Determining Compliance Requirements
- •Determining Data Security Controls
- •Data Maintenance
- •Data Loss Prevention
- •Marking Sensitive Data and Assets
- •Handling Sensitive Information and Assets
- •Data Collection Limitation
- •Data Location
- •Storing Sensitive Data
- •Data Destruction
- •Ensuring Appropriate Data and Asset Retention
- •Data Protection Methods
- •Digital Rights Management
- •Cloud Access Security Broker
- •Pseudonymization
- •Tokenization
- •Anonymization
- •Understanding Data Roles
- •Data Owners
- •Asset Owners
- •Business/Mission Owners
- •Data Processors and Data Controllers
- •Data Custodians
- •Administrators
- •Users and Subjects
- •Using Security Baselines
- •Comparing Tailoring and Scoping
- •Standards Selection
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Cryptographic Foundations
- •Goals of Cryptography
- •Cryptography Concepts
- •Cryptographic Mathematics
- •Ciphers
- •Modern Cryptography
- •Cryptographic Keys
- •Symmetric Key Algorithms
- •Asymmetric Key Algorithms
- •Hashing Algorithms
- •Symmetric Cryptography
- •Cryptographic Modes of Operation
- •Data Encryption Standard
- •Triple DES
- •International Data Encryption Algorithm
- •Blowfish
- •Skipjack
- •Rivest Ciphers
- •Advanced Encryption Standard
- •CAST
- •Comparison of Symmetric Encryption Algorithms
- •Symmetric Key Management
- •Cryptographic Lifecycle
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Asymmetric Cryptography
- •Public and Private Keys
- •ElGamal
- •Elliptic Curve
- •Diffie–Hellman Key Exchange
- •Quantum Cryptography
- •Hash Functions
- •RIPEMD
- •Comparison of Hash Algorithm Value Lengths
- •Digital Signatures
- •HMAC
- •Digital Signature Standard
- •Public Key Infrastructure
- •Certificates
- •Certificate Authorities
- •Certificate Lifecycle
- •Certificate Formats
- •Asymmetric Key Management
- •Hybrid Cryptography
- •Applied Cryptography
- •Portable Devices
- •Web Applications
- •Steganography and Watermarking
- •Networking
- •Emerging Applications
- •Cryptographic Attacks
- •Salting Saves Passwords
- •Ultra vs. Enigma
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Secure Design Principles
- •Objects and Subjects
- •Closed and Open Systems
- •Secure Defaults
- •Fail Securely
- •Keep It Simple
- •Zero Trust
- •Privacy by Design
- •Trust but Verify
- •Techniques for Ensuring CIA
- •Confinement
- •Bounds
- •Isolation
- •Access Controls
- •Trust and Assurance
- •Trusted Computing Base
- •State Machine Model
- •Information Flow Model
- •Noninterference Model
- •Take-Grant Model
- •Access Control Matrix
- •Bell–LaPadula Model
- •Biba Model
- •Clark–Wilson Model
- •Brewer and Nash Model
- •Goguen–Meseguer Model
- •Sutherland Model
- •Graham–Denning Model
- •Harrison–Ruzzo–Ullman Model
- •Select Controls Based on Systems Security Requirements
- •Common Criteria
- •Authorization to Operate
- •Understand Security Capabilities of Information Systems
- •Memory Protection
- •Virtualization
- •Trusted Platform Module
- •Interfaces
- •Fault Tolerance
- •Encryption/Decryption
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Shared Responsibility
- •Hardware
- •Firmware
- •Client-Based Systems
- •Mobile Code
- •Local Caches
- •Server-Based Systems
- •Large-Scale Parallel Data Systems
- •Grid Computing
- •Peer to Peer
- •Industrial Control Systems
- •Distributed Systems
- •Internet of Things
- •Edge and Fog Computing
- •Static Systems
- •Network-Enabled Devices
- •Cyber-Physical Systems
- •Elements Related to Embedded and Static Systems
- •Security Concerns of Embedded and Static Systems
- •Specialized Devices
- •Microservices
- •Infrastructure as Code
- •Virtualized Systems
- •Virtual Software
- •Virtualized Networking
- •Software-Defined Everything
- •Virtualization Security Management
- •Containerization
- •Serverless Architecture
- •Mobile Devices
- •Mobile Device Security Features
- •Mobile Device Deployment Policies
- •Process Isolation
- •Hardware Segmentation
- •System Security Policy
- •Covert Channels
- •Attacks Based on Design or Coding Flaws
- •Rootkits
- •Incremental Attacks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Apply Security Principles to Site and Facility Design
- •Secure Facility Plan
- •Site Selection
- •Facility Design
- •Equipment Failure
- •Wiring Closets
- •Server Rooms/Data Centers
- •Intrusion Detection Systems
- •Cameras
- •Access Abuses
- •Media Storage Facilities
- •Evidence Storage
- •Restricted and Work Area Security
- •Utility Considerations
- •Fire Prevention, Detection, and Suppression
- •Perimeter Security Controls
- •Internal Security Controls
- •Key Performance Indicators of Physical Security
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •OSI Model
- •History of the OSI Model
- •OSI Functionality
- •Encapsulation/Deencapsulation
- •OSI Layers
- •TCP/IP Model
- •Common Application Layer Protocols
- •SNMPv3
- •Transport Layer Protocols
- •Domain Name System
- •DNS Poisoning
- •Domain Hijacking
- •Internet Protocol (IP) Networking
- •IP Classes
- •ICMP
- •IGMP
- •ARP Concerns
- •Secure Communication Protocols
- •Implications of Multilayer Protocols
- •Converged Protocols
- •Voice over Internet Protocol (VoIP)
- •Software-Defined Networking
- •Microsegmentation
- •Wireless Networks
- •Securing the SSID
- •Wireless Channels
- •Conducting a Site Survey
- •Wireless Security
- •Wi-Fi Protected Setup (WPS)
- •Wireless MAC Filter
- •Wireless Antenna Management
- •Using Captive Portals
- •General Wi-Fi Security Procedure
- •Wireless Communications
- •Wireless Attacks
- •Other Communication Protocols
- •Cellular Networks
- •Content Distribution Networks (CDNs)
- •Secure Network Components
- •Secure Operation of Hardware
- •Common Network Equipment
- •Network Access Control
- •Firewalls
- •Endpoint Security
- •Transmission Media
- •Network Topologies
- •Ethernet
- •Sub-Technologies
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Protocol Security Mechanisms
- •Authentication Protocols
- •Port Security
- •Quality of Service (QoS)
- •Secure Voice Communications
- •Voice over Internet Protocol (VoIP)
- •Vishing and Phreaking
- •PBX Fraud and Abuse
- •Remote Access Security Management
- •Remote Connection Security
- •Plan a Remote Access Security Policy
- •Multimedia Collaboration
- •Remote Meeting
- •Instant Messaging and Chat
- •Load Balancing
- •Virtual IPs and Load Persistence
- •Active-Active vs. Active-Passive
- •Manage Email Security
- •Email Security Goals
- •Understand Email Security Issues
- •Email Security Solutions
- •Virtual Private Network
- •Tunneling
- •How VPNs Work
- •Always-On
- •Common VPN Protocols
- •Switching and Virtual LANs
- •Switch Eavesdropping
- •Private IP Addresses
- •Stateful NAT
- •Automatic Private IP Addressing
- •Third-Party Connectivity
- •Circuit Switching
- •Packet Switching
- •Virtual Circuits
- •Fiber-Optic Links
- •Security Control Characteristics
- •Transparency
- •Transmission Management Mechanisms
- •Prevent or Mitigate Network Attacks
- •Eavesdropping
- •Modification Attacks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Controlling Access to Assets
- •Controlling Physical and Logical Access
- •The CIA Triad and Access Controls
- •Managing Identification and Authentication
- •Comparing Subjects and Objects
- •Registration, Proofing, and Establishment of Identity
- •Authorization and Accountability
- •Authentication Factors Overview
- •Something You Know
- •Something You Have
- •Something You Are
- •Multifactor Authentication (MFA)
- •Two-Factor Authentication with Authenticator Apps
- •Passwordless Authentication
- •Device Authentication
- •Service Authentication
- •Mutual Authentication
- •Implementing Identity Management
- •Single Sign-On
- •SSO and Federated Identities
- •Credential Management Systems
- •Credential Manager Apps
- •Scripted Access
- •Session Management
- •Provisioning and Onboarding
- •Deprovisioning and Offboarding
- •Defining New Roles
- •Account Maintenance
- •Account Access Review
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Comparing Access Control Models
- •Comparing Permissions, Rights, and Privileges
- •Understanding Authorization Mechanisms
- •Defining Requirements with a Security Policy
- •Introducing Access Control Models
- •Discretionary Access Control
- •Nondiscretionary Access Control
- •Implementing Authentication Systems
- •Implementing SSO on the Internet
- •Implementing SSO on Internal Networks
- •Understanding Access Control Attacks
- •Crackers, Hackers, and Attackers
- •Risk Elements
- •Common Access Control Attacks
- •Core Protection Methods
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Security Testing
- •Security Assessments
- •Security Audits
- •Performing Vulnerability Assessments
- •Describing Vulnerabilities
- •Vulnerability Scans
- •Penetration Testing
- •Compliance Checks
- •Code Review and Testing
- •Interface Testing
- •Misuse Case Testing
- •Test Coverage Analysis
- •Website Monitoring
- •Implementing Security Management Processes
- •Log Reviews
- •Account Management
- •Disaster Recovery and Business Continuity
- •Training and Awareness
- •Key Performance and Risk Indicators
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Need to Know and Least Privilege
- •Separation of Duties (SoD) and Responsibilities
- •Two-Person Control
- •Job Rotation
- •Mandatory Vacations
- •Privileged Account Management
- •Service Level Agreements (SLAs)
- •Addressing Personnel Safety and Security
- •Duress
- •Travel
- •Emergency Management
- •Security Training and Awareness
- •Provision Resources Securely
- •Information and Asset Ownership
- •Asset Management
- •Apply Resource Protection
- •Media Management
- •Media Protection Techniques
- •Managed Services in the Cloud
- •Shared Responsibility with Cloud Service Models
- •Scalability and Elasticity
- •Provisioning
- •Baselining
- •Using Images for Baselining
- •Automation
- •Managing Change
- •Change Management
- •Versioning
- •Configuration Documentation
- •Managing Patches and Reducing Vulnerabilities
- •Systems to Manage
- •Patch Management
- •Vulnerability Management
- •Vulnerability Scans
- •Common Vulnerabilities and Exposures
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Conducting Incident Management
- •Defining an Incident
- •Incident Management Steps
- •Basic Preventive Measures
- •Understanding Attacks
- •Intrusion Detection and Prevention Systems
- •Specific Preventive Measures
- •Logging and Monitoring
- •The Role of Monitoring
- •Log Management
- •Egress Monitoring
- •Automating Incident Response
- •Understanding SOAR
- •Threat Intelligence
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •The Nature of Disaster
- •Natural Disasters
- •Human-Made Disasters
- •Protecting Hard Drives
- •Protecting Servers
- •Protecting Power Sources
- •Trusted Recovery
- •Quality of Service
- •Recovery Strategy
- •Business Unit and Functional Priorities
- •Crisis Management
- •Emergency Communications
- •Workgroup Recovery
- •Alternate Processing Sites
- •Database Recovery
- •Recovery Plan Development
- •Emergency Response
- •Personnel and Communications
- •Assessment
- •Backups and Off-site Storage
- •Software Escrow Arrangements
- •Utilities
- •Logistics and Supplies
- •Recovery vs. Restoration
- •Testing and Maintenance
- •Structured Walk-Through
- •Simulation Test
- •Parallel Test
- •Lessons Learned
- •Maintenance
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Investigations
- •Investigation Types
- •Evidence
- •Investigation Process
- •Major Categories of Computer Crime
- •Military and Intelligence Attacks
- •Business Attacks
- •Financial Attacks
- •Terrorist Attacks
- •Grudge Attacks
- •Thrill Attacks
- •Hacktivists
- •Ethics
- •Organizational Code of Ethics
- •(ISC)2 Code of Ethics
- •Ethics and the Internet
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Software Development
- •Systems Development Lifecycle
- •Lifecycle Models
- •Gantt Charts and PERT
- •Change and Configuration Management
- •The DevOps Approach
- •Application Programming Interfaces
- •Software Testing
- •Code Repositories
- •Service-Level Agreements
- •Third-Party Software Acquisition
- •Establishing Databases and Data Warehousing
- •Database Management System Architecture
- •Database Transactions
- •Security for Multilevel Databases
- •Open Database Connectivity
- •NoSQL
- •Expert Systems
- •Machine Learning
- •Neural Networks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Malware
- •Sources of Malicious Code
- •Viruses
- •Logic Bombs
- •Trojan Horses
- •Worms
- •Spyware and Adware
- •Ransomware
- •Malicious Scripts
- •Zero-Day Attacks
- •Malware Prevention
- •Platforms Vulnerable to Malware
- •Antimalware Software
- •Integrity Monitoring
- •Advanced Threat Protection
- •Application Attacks
- •Buffer Overflows
- •Time of Check to Time of Use
- •Backdoors
- •Privilege Escalation and Rootkits
- •Injection Vulnerabilities
- •SQL Injection Attacks
- •Code Injection Attacks
- •Command Injection Attacks
- •Exploiting Authorization Vulnerabilities
- •Insecure Direct Object References
- •Directory Traversal
- •File Inclusion
- •Request Forgery
- •Session Hijacking
- •Application Security Controls
- •Input Validation
- •Web Application Firewalls
- •Database Security
- •Code Security
- •Secure Coding Practices
- •Source Code Comments
- •Error Handling
- •Hard-Coded Credentials
- •Memory Management
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Chapter 2: Personnel Security and Risk Management Concepts
- •Chapter 3: Business Continuity Planning
- •Chapter 4: Laws, Regulations, and Compliance
- •Chapter 5: Protecting Security of Assets
- •Chapter 10: Physical Security Requirements
- •Chapter 11: Secure Network Architecture and Components
- •Chapter 12: Secure Communications and Network Attacks
- •Chapter 17: Preventing and Responding to Incidents
- •Chapter 18: Disaster Recovery Planning
- •Chapter 19: Investigations and Ethics
- •Chapter 20: Software Development Security
- •Chapter 21: Malicious Code and Application Attacks
- •Chapter 3: Business Continuity Planning
- •Chapter 5: Protecting Security of Assets
- •Chapter 6: Cryptography and Symmetric Key Algorithms
- •Chapter 12: Secure Communications and Network Attacks
- •Chapter 15: Security Assessment and Testing
- •Chapter 17: Preventing and Responding to Incidents
- •Chapter 18: Disaster Recovery Planning
- •Chapter 19: Investigations and Ethics
- •Chapter 21: Malicious Code and Application Attacks
- •Index

The Asset Security domain focuses on collecting, handling, and protecting information throughout its lifecycle. A primary step in this domain is classifying information based on its value to
the organization. All follow-on actions vary depending on the classification. For example, highly classified data requires stringent security controls. In contrast, unclassified data uses fewer security controls.
Identifying and Classifying Information
and Assets
Managing the data lifecycle refers to protecting it from the cradle to the grave. Steps need to be taken to protect the data when it is first created until it is destroyed.
One of the first steps in the lifecycle is identifying and classifying information and assets. Organizations often include classification definitions within a security policy. Personnel then label assets appropriately based on the security policy requirements. In this context, assets include sensitive data, the hardware used to process it, and the media used to hold it.
Defining Sensitive Data
Sensitive data is any information that isn’t public or unclassified. It can include confidential, proprietary, protected, or any other type of data that an organization needs to protect due to its value to the organization, or to comply with existing laws and regulations.
Personally Identifiable Information
Personally identifiable information (PII) is any information that can identify an individual. National Institute of Standards and Technology (NIST) Special Publication (SP) 800-122 provides a more formal definition:
Any information about an individual maintained by an agency, including
(1)any information that can be used to distinguish or trace an individual’s identity, such as name, social security number, date and place of birth, mother’s maiden name, or biometric records; and
(2)any other information that is linked or linkable to an individual, such as medical, educational, financial, and employment information.

Identifying and Classifying Information and Assets |
181 |
The key is that organizations have a responsibility to protect PII. This includes PII related to employees and customers. Many laws require organizations to notify individuals if a data breach results in a compromise of PII.
Protection for personally identifiable information (PII) drives privacy and confidentiality requirements for rules, regulations, and legislation worldwide (especially in North America and the European Union). NIST SP 800122, Guide to Protecting the Confidentiality of Personally Identifiable Information (PII), provides more information on how to protect PII. It is available from the NIST Special Publications (800 Series) download page: csrc.nist.gov/publications/sp800.
Protected Health Information
Protected health information (PHI) is any health-related information that can be related to a specific person. In the United States, the Health Insurance Portability and Accountability Act (HIPAA) mandates PHI protection. HIPAA provides a more formal definition of PHI:
Health information means any information, whether oral or recorded in any form or medium, that—
(A)is created or received by a health care provider, health plan, public health authority, employer, life insurer, school or university, or health care clearinghouse; and
(B)relates to the past, present, or future physical or mental health or condition of any individual, the provision of health care to an individual, or the past, present, or future payment for the provision of health care to an individual.
Some people think that only medical care providers, such as doctors and hospitals, need to protect PHI. However, HIPAA defines PHI much more broadly. Any employer that provides, or supplements, healthcare policies collects and handles PHI. It’s common for organizations to provide or supplement healthcare policies, so HIPAA applies to a large percentage of organizations in the United States.
Proprietary Data
Proprietary data refers to any data that helps an organization maintain a competitive edge. It could be software code it developed, technical plans for products, internal processes, intellectual property, or trade secrets. If competitors can access the proprietary data, it can seriously affect the primary mission of an organization.
Although copyrights, patents, and trade secret laws provide a level of protection for proprietary data, this isn’t always enough. Many criminals ignore copyrights, patents, and laws. Similarly, foreign entities have stolen a significant amount of proprietary data.

182 Chapter 5 ■ Protecting Security of Assets
Defining Data Classifications
Organizations typically include data classifications in their security policy or a data policy. A data classification identifies the value of the data to the organization and is critical to protect data confidentiality and integrity. The policy identifies classification labels used within the organization. It also identifies how data owners can determine the proper classification and how personnel should protect data based on its classification.
As an example, government data classifications include top secret, secret, confidential, and unclassified. Anything above unclassified is sensitive data, but clearly, these have different values. The U.S. government provides clear definitions for these classifications. As you read them, note that the wording of each definition is close except for a few key words. Top secret uses the phrase “exceptionally grave damage,” secret uses the phrase “serious damage,” and confidential uses “damage”:
Top Secret The top secret label is “applied to information, the unauthorized disclosure of which reasonably could be expected to cause exceptionally grave damage to the national security that the original classification authority is able to identify or describe.”
Secret The secret label is “applied to information, the unauthorized disclosure of which reasonably could be expected to cause serious damage to the national security that the original classification authority is able to identify or describe.”
Confidential The confidential label is “applied to information, the unauthorized disclosure of which reasonably could be expected to cause damage to the national security that the original classification authority is able to identify or describe.”
Unclassified Unclassified refers to any data that doesn’t meet one of the descriptions for top secret, secret, or confidential data. Within the United States, unclassified data is available to anyone, though it often requires individuals to request the information using procedures identified in the Freedom of Information Act (FOIA).
There are additional subclassifications of unclassified, such as for official use only (FOUO) and sensitive but unclassified (SBU). Documents with these designations have strict controls limiting their distribution. As an example, the U.S. Internal Revenue Service (IRS) uses SBU for individual tax records, restricting access to these records.
A classification authority is the entity that applies the original classification to the sensitive data, and strict rules identify who can do so. For example, the U.S. president, vice president, and agency heads can classify data in the United States. Additionally, individuals in any of these positions can delegate permission for others to classify data.
Although the focus of classifications is often on data, these classifications also apply to hardware assets. This includes any computing system or media that processes or holds this data.

Identifying and Classifying Information and Assets |
183 |
Nongovernmental organizations rarely need to classify their data based on potential damage to national security. However, management is concerned about potential damage to the organization. For example, if attackers accessed the organization’s data, what is the potential adverse impact? In other words, an organization doesn’t just consider the sensitivity of the data but also the criticality of the data. They could use the same phrases of “exceptionally grave damage,” “serious damage,” and “damage” that the U.S. government uses when describing top secret, secret, and confidential data.
Some nongovernmental organizations use labels such as Class 3, Class 2, Class 1, and Class 0. Other organizations use more meaningful labels such as confidential (or proprietary), private, sensitive, and public. Figure 5.1 shows the relationship between these different classifications, with the government classifications on the left and the nongovernment (or civilian) classifications on the right. Just as the government can define the data based on the potential adverse impact from a data breach, organizations can use similar descriptions.
Both government and civilian classifications identify the relative value of the data to the organization, with top secret representing the highest classification for governments and confidential representing the highest classification for organizations in Figure 5.1. However, it’s important to remember that organizations can use any labels they desire. When the labels in Figure 5.1 are used, sensitive information is any information that isn’t unclassified (when using the government labels) or isn’t public (when using the civilian classifications). The following sections identify the meaning of some common nongovernment classifications. Remember, even though these are commonly used, there is no standard that all private organizations must use.
FIGURE 5 . 1 Data classifications
Government Classifications and |
|
Nongovernment Classifications and |
||||||
Potential Adverse Impact |
|
Potential Adverse Impact |
||||||
from a Data Breach |
|
from a Data Breach |
||||||
Top Secret |
Class 3 |
Confidential/Proprietary |
||||||
Exceptionally Grave Damage |
Exceptionally Grave Damage |
|||||||
|
||||||||
|
|
|
|
|
|
|
|
|
Secret |
Class 2 |
|
Private |
|||||
Serious Damage |
|
Serious Damage |
||||||
|
|
|||||||
|
|
|
|
|
|
|
||
Confidential |
Class 1 |
|
Sensitive |
|||||
Damage |
|
Damage |
||||||
|
|
|||||||
|
|
|
|
|
|
|||
Unclassified |
Class 0 |
|
|
Public |
||||
No damage |
|
|
No damage |
|||||
|
|
|

184 Chapter 5 ■ Protecting Security of Assets
Confidential or Proprietary The confidential or proprietary label typically refers to the highest level of classified data. In this context, a data breach would cause exceptionally grave damage to the mission of the organization. As an example, attackers have repeatedly attacked Sony, stealing more than 100 terabytes of data, including full-length versions of unreleased movies. These quickly showed up on file-sharing sites, and security experts estimate that people downloaded these movies up to a million times. With pirated versions of the movies available, many people skipped seeing them when Sony ultimately released them. This directly affected Sony’s bottom line. The movies were proprietary, and the organization might have considered it exceptionally grave damage. In retrospect, they may choose to label movies as confidential or proprietary and use the strongest access controls to protect them.
Private The private label refers to data that should stay private within the organization but that doesn’t meet the definition of confidential or proprietary data. In this context, a data breach would cause serious damage to the mission of the organization. Many organizations label PII and PHI data as private. It’s also common to label internal employee data and some financial data as private. As an example, the payroll department of a company would have access to payroll data, but this data is not available to regular employees.
Sensitive Sensitive data is similar to confidential data. In this context, a data breach would cause damage to the mission of the organization. As an example, IT personnel within an organization might have extensive data about the internal network, including the layout, devices, operating systems, software, Internet Protocol (IP) addresses, and more. If attackers have easy access to this data, it makes it much easier for them to launch attacks. Management may decide they don’t want this information available to the public, so they might label it as sensitive.
Public Public data is similar to unclassified data. It includes information posted in websites, brochures, or any other public source. Although an organization doesn’t protect the confidentiality of public data, it does take steps to protect its integrity. For example, anyone can view public data posted on a website. However, an organization doesn’t want attackers to modify this data, so it takes steps to protect it.
Although some sources refer to sensitive information as any data that isn’t public or unclassified, many organizations use sensitive as a label. In other words, the term sensitive information might mean one thing in one organization but something else in another organization. For the CISSP exam, remember that “sensitive information” typically refers to any information that isn’t public or unclassified.
Civilian organizations aren’t required to use any specific classification labels. However, it is important to classify data in some manner and ensure personnel understand the classifications. No matter what labels an organization uses, it still has an obligation to protect sensitive information.