
- •Acknowledgments
- •About the Authors
- •About the Technical Editors
- •Contents at a Glance
- •Contents
- •Foreword
- •Introduction
- •Overview of the CISSP Exam
- •The Elements of This Study Guide
- •Study Guide Exam Objectives
- •Objective Map
- •Reader Support for This Book
- •Security 101
- •Confidentiality
- •Integrity
- •Availability
- •Protection Mechanisms
- •Security Boundaries
- •Third-Party Governance
- •Documentation Review
- •Manage the Security Function
- •Alignment of Security Function to Business Strategy, Goals, Mission, and Objectives
- •Organizational Processes
- •Organizational Roles and Responsibilities
- •Security Control Frameworks
- •Due Diligence and Due Care
- •Security Policy, Standards, Procedures, and Guidelines
- •Security Policies
- •Security Standards, Baselines, and Guidelines
- •Security Procedures
- •Threat Modeling
- •Identifying Threats
- •Determining and Diagramming Potential Attacks
- •Performing Reduction Analysis
- •Prioritization and Response
- •Supply Chain Risk Management
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Job Descriptions and Responsibilities
- •Candidate Screening and Hiring
- •Onboarding: Employment Agreements and Policies
- •Employee Oversight
- •Compliance Policy Requirements
- •Privacy Policy Requirements
- •Understand and Apply Risk Management Concepts
- •Risk Terminology and Concepts
- •Asset Valuation
- •Identify Threats and Vulnerabilities
- •Risk Assessment/Analysis
- •Risk Responses
- •Cost vs. Benefit of Security Controls
- •Countermeasure Selection and Implementation
- •Applicable Types of Controls
- •Security Control Assessment
- •Monitoring and Measurement
- •Risk Reporting and Documentation
- •Continuous Improvement
- •Risk Frameworks
- •Social Engineering
- •Social Engineering Principles
- •Eliciting Information
- •Prepending
- •Phishing
- •Spear Phishing
- •Whaling
- •Smishing
- •Vishing
- •Spam
- •Shoulder Surfing
- •Invoice Scams
- •Hoax
- •Impersonation and Masquerading
- •Tailgating and Piggybacking
- •Dumpster Diving
- •Identity Fraud
- •Typo Squatting
- •Influence Campaigns
- •Awareness
- •Training
- •Education
- •Improvements
- •Effectiveness Evaluation
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Planning for Business Continuity
- •Project Scope and Planning
- •Organizational Review
- •BCP Team Selection
- •Resource Requirements
- •Legal and Regulatory Requirements
- •Business Impact Analysis
- •Identifying Priorities
- •Risk Identification
- •Likelihood Assessment
- •Impact Analysis
- •Resource Prioritization
- •Continuity Planning
- •Strategy Development
- •Provisions and Processes
- •Plan Approval and Implementation
- •Plan Approval
- •Plan Implementation
- •Training and Education
- •BCP Documentation
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Categories of Laws
- •Criminal Law
- •Civil Law
- •Administrative Law
- •Laws
- •Computer Crime
- •Intellectual Property (IP)
- •Licensing
- •Import/Export
- •Privacy
- •State Privacy Laws
- •Compliance
- •Contracting and Procurement
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Defining Sensitive Data
- •Defining Data Classifications
- •Defining Asset Classifications
- •Understanding Data States
- •Determining Compliance Requirements
- •Determining Data Security Controls
- •Data Maintenance
- •Data Loss Prevention
- •Marking Sensitive Data and Assets
- •Handling Sensitive Information and Assets
- •Data Collection Limitation
- •Data Location
- •Storing Sensitive Data
- •Data Destruction
- •Ensuring Appropriate Data and Asset Retention
- •Data Protection Methods
- •Digital Rights Management
- •Cloud Access Security Broker
- •Pseudonymization
- •Tokenization
- •Anonymization
- •Understanding Data Roles
- •Data Owners
- •Asset Owners
- •Business/Mission Owners
- •Data Processors and Data Controllers
- •Data Custodians
- •Administrators
- •Users and Subjects
- •Using Security Baselines
- •Comparing Tailoring and Scoping
- •Standards Selection
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Cryptographic Foundations
- •Goals of Cryptography
- •Cryptography Concepts
- •Cryptographic Mathematics
- •Ciphers
- •Modern Cryptography
- •Cryptographic Keys
- •Symmetric Key Algorithms
- •Asymmetric Key Algorithms
- •Hashing Algorithms
- •Symmetric Cryptography
- •Cryptographic Modes of Operation
- •Data Encryption Standard
- •Triple DES
- •International Data Encryption Algorithm
- •Blowfish
- •Skipjack
- •Rivest Ciphers
- •Advanced Encryption Standard
- •CAST
- •Comparison of Symmetric Encryption Algorithms
- •Symmetric Key Management
- •Cryptographic Lifecycle
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Asymmetric Cryptography
- •Public and Private Keys
- •ElGamal
- •Elliptic Curve
- •Diffie–Hellman Key Exchange
- •Quantum Cryptography
- •Hash Functions
- •RIPEMD
- •Comparison of Hash Algorithm Value Lengths
- •Digital Signatures
- •HMAC
- •Digital Signature Standard
- •Public Key Infrastructure
- •Certificates
- •Certificate Authorities
- •Certificate Lifecycle
- •Certificate Formats
- •Asymmetric Key Management
- •Hybrid Cryptography
- •Applied Cryptography
- •Portable Devices
- •Web Applications
- •Steganography and Watermarking
- •Networking
- •Emerging Applications
- •Cryptographic Attacks
- •Salting Saves Passwords
- •Ultra vs. Enigma
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Secure Design Principles
- •Objects and Subjects
- •Closed and Open Systems
- •Secure Defaults
- •Fail Securely
- •Keep It Simple
- •Zero Trust
- •Privacy by Design
- •Trust but Verify
- •Techniques for Ensuring CIA
- •Confinement
- •Bounds
- •Isolation
- •Access Controls
- •Trust and Assurance
- •Trusted Computing Base
- •State Machine Model
- •Information Flow Model
- •Noninterference Model
- •Take-Grant Model
- •Access Control Matrix
- •Bell–LaPadula Model
- •Biba Model
- •Clark–Wilson Model
- •Brewer and Nash Model
- •Goguen–Meseguer Model
- •Sutherland Model
- •Graham–Denning Model
- •Harrison–Ruzzo–Ullman Model
- •Select Controls Based on Systems Security Requirements
- •Common Criteria
- •Authorization to Operate
- •Understand Security Capabilities of Information Systems
- •Memory Protection
- •Virtualization
- •Trusted Platform Module
- •Interfaces
- •Fault Tolerance
- •Encryption/Decryption
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Shared Responsibility
- •Hardware
- •Firmware
- •Client-Based Systems
- •Mobile Code
- •Local Caches
- •Server-Based Systems
- •Large-Scale Parallel Data Systems
- •Grid Computing
- •Peer to Peer
- •Industrial Control Systems
- •Distributed Systems
- •Internet of Things
- •Edge and Fog Computing
- •Static Systems
- •Network-Enabled Devices
- •Cyber-Physical Systems
- •Elements Related to Embedded and Static Systems
- •Security Concerns of Embedded and Static Systems
- •Specialized Devices
- •Microservices
- •Infrastructure as Code
- •Virtualized Systems
- •Virtual Software
- •Virtualized Networking
- •Software-Defined Everything
- •Virtualization Security Management
- •Containerization
- •Serverless Architecture
- •Mobile Devices
- •Mobile Device Security Features
- •Mobile Device Deployment Policies
- •Process Isolation
- •Hardware Segmentation
- •System Security Policy
- •Covert Channels
- •Attacks Based on Design or Coding Flaws
- •Rootkits
- •Incremental Attacks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Apply Security Principles to Site and Facility Design
- •Secure Facility Plan
- •Site Selection
- •Facility Design
- •Equipment Failure
- •Wiring Closets
- •Server Rooms/Data Centers
- •Intrusion Detection Systems
- •Cameras
- •Access Abuses
- •Media Storage Facilities
- •Evidence Storage
- •Restricted and Work Area Security
- •Utility Considerations
- •Fire Prevention, Detection, and Suppression
- •Perimeter Security Controls
- •Internal Security Controls
- •Key Performance Indicators of Physical Security
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •OSI Model
- •History of the OSI Model
- •OSI Functionality
- •Encapsulation/Deencapsulation
- •OSI Layers
- •TCP/IP Model
- •Common Application Layer Protocols
- •SNMPv3
- •Transport Layer Protocols
- •Domain Name System
- •DNS Poisoning
- •Domain Hijacking
- •Internet Protocol (IP) Networking
- •IP Classes
- •ICMP
- •IGMP
- •ARP Concerns
- •Secure Communication Protocols
- •Implications of Multilayer Protocols
- •Converged Protocols
- •Voice over Internet Protocol (VoIP)
- •Software-Defined Networking
- •Microsegmentation
- •Wireless Networks
- •Securing the SSID
- •Wireless Channels
- •Conducting a Site Survey
- •Wireless Security
- •Wi-Fi Protected Setup (WPS)
- •Wireless MAC Filter
- •Wireless Antenna Management
- •Using Captive Portals
- •General Wi-Fi Security Procedure
- •Wireless Communications
- •Wireless Attacks
- •Other Communication Protocols
- •Cellular Networks
- •Content Distribution Networks (CDNs)
- •Secure Network Components
- •Secure Operation of Hardware
- •Common Network Equipment
- •Network Access Control
- •Firewalls
- •Endpoint Security
- •Transmission Media
- •Network Topologies
- •Ethernet
- •Sub-Technologies
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Protocol Security Mechanisms
- •Authentication Protocols
- •Port Security
- •Quality of Service (QoS)
- •Secure Voice Communications
- •Voice over Internet Protocol (VoIP)
- •Vishing and Phreaking
- •PBX Fraud and Abuse
- •Remote Access Security Management
- •Remote Connection Security
- •Plan a Remote Access Security Policy
- •Multimedia Collaboration
- •Remote Meeting
- •Instant Messaging and Chat
- •Load Balancing
- •Virtual IPs and Load Persistence
- •Active-Active vs. Active-Passive
- •Manage Email Security
- •Email Security Goals
- •Understand Email Security Issues
- •Email Security Solutions
- •Virtual Private Network
- •Tunneling
- •How VPNs Work
- •Always-On
- •Common VPN Protocols
- •Switching and Virtual LANs
- •Switch Eavesdropping
- •Private IP Addresses
- •Stateful NAT
- •Automatic Private IP Addressing
- •Third-Party Connectivity
- •Circuit Switching
- •Packet Switching
- •Virtual Circuits
- •Fiber-Optic Links
- •Security Control Characteristics
- •Transparency
- •Transmission Management Mechanisms
- •Prevent or Mitigate Network Attacks
- •Eavesdropping
- •Modification Attacks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Controlling Access to Assets
- •Controlling Physical and Logical Access
- •The CIA Triad and Access Controls
- •Managing Identification and Authentication
- •Comparing Subjects and Objects
- •Registration, Proofing, and Establishment of Identity
- •Authorization and Accountability
- •Authentication Factors Overview
- •Something You Know
- •Something You Have
- •Something You Are
- •Multifactor Authentication (MFA)
- •Two-Factor Authentication with Authenticator Apps
- •Passwordless Authentication
- •Device Authentication
- •Service Authentication
- •Mutual Authentication
- •Implementing Identity Management
- •Single Sign-On
- •SSO and Federated Identities
- •Credential Management Systems
- •Credential Manager Apps
- •Scripted Access
- •Session Management
- •Provisioning and Onboarding
- •Deprovisioning and Offboarding
- •Defining New Roles
- •Account Maintenance
- •Account Access Review
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Comparing Access Control Models
- •Comparing Permissions, Rights, and Privileges
- •Understanding Authorization Mechanisms
- •Defining Requirements with a Security Policy
- •Introducing Access Control Models
- •Discretionary Access Control
- •Nondiscretionary Access Control
- •Implementing Authentication Systems
- •Implementing SSO on the Internet
- •Implementing SSO on Internal Networks
- •Understanding Access Control Attacks
- •Crackers, Hackers, and Attackers
- •Risk Elements
- •Common Access Control Attacks
- •Core Protection Methods
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Security Testing
- •Security Assessments
- •Security Audits
- •Performing Vulnerability Assessments
- •Describing Vulnerabilities
- •Vulnerability Scans
- •Penetration Testing
- •Compliance Checks
- •Code Review and Testing
- •Interface Testing
- •Misuse Case Testing
- •Test Coverage Analysis
- •Website Monitoring
- •Implementing Security Management Processes
- •Log Reviews
- •Account Management
- •Disaster Recovery and Business Continuity
- •Training and Awareness
- •Key Performance and Risk Indicators
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Need to Know and Least Privilege
- •Separation of Duties (SoD) and Responsibilities
- •Two-Person Control
- •Job Rotation
- •Mandatory Vacations
- •Privileged Account Management
- •Service Level Agreements (SLAs)
- •Addressing Personnel Safety and Security
- •Duress
- •Travel
- •Emergency Management
- •Security Training and Awareness
- •Provision Resources Securely
- •Information and Asset Ownership
- •Asset Management
- •Apply Resource Protection
- •Media Management
- •Media Protection Techniques
- •Managed Services in the Cloud
- •Shared Responsibility with Cloud Service Models
- •Scalability and Elasticity
- •Provisioning
- •Baselining
- •Using Images for Baselining
- •Automation
- •Managing Change
- •Change Management
- •Versioning
- •Configuration Documentation
- •Managing Patches and Reducing Vulnerabilities
- •Systems to Manage
- •Patch Management
- •Vulnerability Management
- •Vulnerability Scans
- •Common Vulnerabilities and Exposures
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Conducting Incident Management
- •Defining an Incident
- •Incident Management Steps
- •Basic Preventive Measures
- •Understanding Attacks
- •Intrusion Detection and Prevention Systems
- •Specific Preventive Measures
- •Logging and Monitoring
- •The Role of Monitoring
- •Log Management
- •Egress Monitoring
- •Automating Incident Response
- •Understanding SOAR
- •Threat Intelligence
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •The Nature of Disaster
- •Natural Disasters
- •Human-Made Disasters
- •Protecting Hard Drives
- •Protecting Servers
- •Protecting Power Sources
- •Trusted Recovery
- •Quality of Service
- •Recovery Strategy
- •Business Unit and Functional Priorities
- •Crisis Management
- •Emergency Communications
- •Workgroup Recovery
- •Alternate Processing Sites
- •Database Recovery
- •Recovery Plan Development
- •Emergency Response
- •Personnel and Communications
- •Assessment
- •Backups and Off-site Storage
- •Software Escrow Arrangements
- •Utilities
- •Logistics and Supplies
- •Recovery vs. Restoration
- •Testing and Maintenance
- •Structured Walk-Through
- •Simulation Test
- •Parallel Test
- •Lessons Learned
- •Maintenance
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Investigations
- •Investigation Types
- •Evidence
- •Investigation Process
- •Major Categories of Computer Crime
- •Military and Intelligence Attacks
- •Business Attacks
- •Financial Attacks
- •Terrorist Attacks
- •Grudge Attacks
- •Thrill Attacks
- •Hacktivists
- •Ethics
- •Organizational Code of Ethics
- •(ISC)2 Code of Ethics
- •Ethics and the Internet
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Software Development
- •Systems Development Lifecycle
- •Lifecycle Models
- •Gantt Charts and PERT
- •Change and Configuration Management
- •The DevOps Approach
- •Application Programming Interfaces
- •Software Testing
- •Code Repositories
- •Service-Level Agreements
- •Third-Party Software Acquisition
- •Establishing Databases and Data Warehousing
- •Database Management System Architecture
- •Database Transactions
- •Security for Multilevel Databases
- •Open Database Connectivity
- •NoSQL
- •Expert Systems
- •Machine Learning
- •Neural Networks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Malware
- •Sources of Malicious Code
- •Viruses
- •Logic Bombs
- •Trojan Horses
- •Worms
- •Spyware and Adware
- •Ransomware
- •Malicious Scripts
- •Zero-Day Attacks
- •Malware Prevention
- •Platforms Vulnerable to Malware
- •Antimalware Software
- •Integrity Monitoring
- •Advanced Threat Protection
- •Application Attacks
- •Buffer Overflows
- •Time of Check to Time of Use
- •Backdoors
- •Privilege Escalation and Rootkits
- •Injection Vulnerabilities
- •SQL Injection Attacks
- •Code Injection Attacks
- •Command Injection Attacks
- •Exploiting Authorization Vulnerabilities
- •Insecure Direct Object References
- •Directory Traversal
- •File Inclusion
- •Request Forgery
- •Session Hijacking
- •Application Security Controls
- •Input Validation
- •Web Application Firewalls
- •Database Security
- •Code Security
- •Secure Coding Practices
- •Source Code Comments
- •Error Handling
- •Hard-Coded Credentials
- •Memory Management
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Chapter 2: Personnel Security and Risk Management Concepts
- •Chapter 3: Business Continuity Planning
- •Chapter 4: Laws, Regulations, and Compliance
- •Chapter 5: Protecting Security of Assets
- •Chapter 10: Physical Security Requirements
- •Chapter 11: Secure Network Architecture and Components
- •Chapter 12: Secure Communications and Network Attacks
- •Chapter 17: Preventing and Responding to Incidents
- •Chapter 18: Disaster Recovery Planning
- •Chapter 19: Investigations and Ethics
- •Chapter 20: Software Development Security
- •Chapter 21: Malicious Code and Application Attacks
- •Chapter 3: Business Continuity Planning
- •Chapter 5: Protecting Security of Assets
- •Chapter 6: Cryptography and Symmetric Key Algorithms
- •Chapter 12: Secure Communications and Network Attacks
- •Chapter 15: Security Assessment and Testing
- •Chapter 17: Preventing and Responding to Incidents
- •Chapter 18: Disaster Recovery Planning
- •Chapter 19: Investigations and Ethics
- •Chapter 21: Malicious Code and Application Attacks
- •Index
Social Engineering |
93 |
be discovered through dumpster diving. The materials gathered via dumpster diving can be used to craft a more believable pretext.
To prevent dumpster diving, or at least reduce its value to an attacker, all documents should be shredded and/or incinerated before being discarded. Additionally, no storage media should ever be discarded in the trash; use a secure disposal technique or service. Secure storage media disposal often includes incineration, shredding, or chipping.
Identity Fraud
Identity fraud and identity theft are terms that are often used interchangeably. In fact, the U.S. Department of Justice (DoJ) states that “Identity theft and identity fraud are terms used to refer to all types of crime in which someone wrongfully obtains and uses another person’s personal data in some way that involves fraud or deception, typically for economic gain” (www.justice.gov/criminal-fraud/identity-theft/identity-theft-and- identity-fraud). Identity fraud and identity theft can be both the purpose of a social engineering attack (i.e., to steal PII) as well as a tool used to further the success of a social engineering attack.
However, it is important to recognize that while we can use the terms as synonyms (especially in casual conversation), there is more value to be gained by understanding how they are different.
Identity theft is the act of stealing someone’s identity. Specifically, this can refer to the initial act of information gathering or elicitation where usernames, emails, passwords, answers to secret questions, credit card numbers, Social Security numbers, healthcare services numbers, and other related and relevant facts are stolen or otherwise obtained by the attacker. So, the first definition of identity theft is the actual theft of the credentials and information for someone’s accounts or financial positions.
A second definition of identity theft is when those stolen credentials and details are used to take over someone’s account. This could include logging into their account on an online service; making false charges to their credit card, ATM card, or debit card; writing false checks against their checking account; or opening a new line of credit in the victim’s name using their Social Security number. When an attacker steals and uses a victim’s credentials, this is known as credential hijacking.
This second definition of identity theft is also very similar to the definition of identity fraud. Fraud is when you claim something that is false to be true. Identity fraud is when you falsely claim to be someone else through the use of stolen information from the victim. Identity fraud is criminal impersonation or intentional deception for personal or financial gain. Examples of identity fraud include taking employment under someone else’s Social Security number, initiating phone service or utilities in someone else’s name, or using someone else’s health insurance to gain medical services.
You can consider identity theft and identity fraud to be a form of spoofing. Spoofing is any action to hide a valid identity, often by taking on the identity of something else. In addition to the concept of human-focused spoofing (i.e., identity fraud), spoofing is a common tactic for hackers against technology. Hackers often spoof email addresses, IP
94 Chapter 2 ■ Personnel Security and Risk Management Concepts
addresses, media access control (MAC) addresses, Address Resolution Protocol (ARP) communications, Wi-Fi networks, websites, mobile phone apps, and more. These and other spoofing-related topics are covered elsewhere in this book.
Identity theft and identity fraud are also related to impersonation. Impersonation is the act of taking on someone’s identity. This might be accomplished by logging into their account with stolen credentials or claiming to be someone else when on the phone. These
and other impersonation concepts were covered earlier in the “Impersonation and Masquerading” section.
As a current or future victim of identity theft/fraud, you should take actions to reduce your vulnerability, increase the chance of detecting such attacks, and improve your defenses against this type of injustice. For information on these defenses, see www.usa.gov/ identity-theft and www.consumer.ftc.gov/articles/0235-identity-theft- protection-services.
Typo Squatting
Typo squatting is a practice employed to capture and redirect traffic when a user mistypes the domain name or IP address of an intended resource. This is a social engineering attack that takes advantage of a person’s potential to mistype a fully qualified domain name (FQDN) or address. A malicious site squatter predicts URL typos and then registers those domain names to direct traffic to their own site. This can be done for competition or for malicious intent. The variations used for typo squatting include common misspellings (such as googel.com), typing errors (such as gooogle.com), variations on a name or word (for example, plurality, as in googles.com), and different top-level domains (TLDs) (such as google.edu).
URL hijacking can also refer to the practice of displaying a link or advertisement that looks like that of a well-known product, service, or site but, when clicked, redirects the user to an alternate location, service, or product. This may be accomplished by posting sites and pages and exploiting search engine optimization (SEO) to cause your content to occur higher in search results, or through the use of adware that replaces legitimate ads and links with those leading to alternate or malicious locations.
Clickjacking is a means to redirect a user’s click or selection on a web page to an alternate, often malicious target instead of the intended and desired location. This can be accomplished through several techniques. Some alter the code of the original web page in order to include script that will automatically replace the valid URL with an alternate URL at the moment the mouse click or selection occurs. Another means is to add an invisible or hidden overlay, frame, or image map over the displayed page. The user sees the original page, but any mouse click or selection will be captured by the floating frame and redirected to the malicious target. Clickjacking can be used to perform phishing attacks, hijacking, and on-path attacks.
Influence Campaigns
Influence campaigns are social engineering attacks that attempt to guide, adjust, or change public opinion. Although such attacks might be undertaken by hackers against individuals or

Social Engineering |
95 |
organizations, most influence campaigns seem to be waged by nation-states against their real or perceived foreign enemies.
Influence campaigns are linked to the distribution of disinformation, propaganda, false information, “fake news,” and even the activity of doxing. Misleading, incomplete, crafted, and altered information can be used as part of an influence campaign to adjust the perception of readers and viewers to the concepts, thoughts, and ideologies of the influencer. These tactics have been used by invaders for centuries to turn a population against their own government. In the current digital information age, influence campaigns are easier to wage than ever before and some of the perpetrators are domestic. Modern influence campaigns don’t need to rely on distribution of printed materials but can digitally transmit the propaganda directly to the targets.
Doxing is the collection of information about an individual or an organization (which can also include governments and the military) in order to disclose the collected data publicly for the purpose of chaining the perception of the target. Doxing can include withholding of information that contradicts the intended narrative of the attacker. Doxing can fabricate or alter information to place false accusations against the target. Doxing has been an unfortunately effective tool against individuals and organizations deployed by hackers, hacktivists, journalists, and governments alike.
Hybrid Warfare
Nations no longer limit their attacks against their real or perceived enemies using traditional, kinetic weaponry. Now they combine classical military strategy with modern capabilities, including social engineering, digital influence campaigns, psychological warfare efforts, political tactics, and cyberwarfare capabilities. This is known as hybrid warfare. Some entities use the term nonlinear warfare to refer to this concept.
It is important to realize that nations will use whatever tools or weapons are available to them when they feel threatened or decide they must strike first. With the use of hybrid warfare tactics, there is far greater risk to every individual than in battles of the past. Now with cyberwar and influence campaigns, every person can be targeted and potentially harmed.
Keep in mind that harm is not just physical in hybrid warfare; it can also damage reputation, finances, digital infrastructure, and relationships.
For a more thorough look hybrid warfare, read the United States Government Accountability Office’s “Hybrid Warfare” report at www.gao.gov/products/gao-10-1036r.
“Cyberwarfare: Origins, Motivations and What You Can Do in
Response” is a helpful paper you can find at www.globalknowledge
.com/us-en/resources/resource-library/white-papers/ cyberwarfare-origins-motivations-and-what-you-can-do-
in-response.

96 Chapter 2 ■ Personnel Security and Risk Management Concepts
Social Media
Social media has become a weapon in the hands of nation-states as they wage elements of hybrid warfare against their targets. In the last decade, we have seen evidence of several nations, including our own, participate in social media–based influence campaigns. You should realize that you cannot just assume that content you see on a social network is accurate, valid, or complete. Even when quoted by your friends, when referenced in popular media, when seemingly in line with your own expectations, you have to be skeptical of everything that reaches you through your digital communication devices. The use and abuse of social media by adversaries foreign and domestic brings the social engineering attack concept to a whole new level.
A great resource for learning how not to fall for false information distributed through the internet is the “Navigating Digital Information” series presented by the YouTube channel CrashCourse: www.youtube.com/ playlist?list=PL8dPuuaLjXtN07XYqqWSKpPrtNDiCHTzU.
Workers can easily waste time and system resources by interacting with social media when that task is not part of their job description. The company’s acceptable user policy (AUP) should indicate that workers need to focus on work while at work rather than spending time on personal or non-work-related tasks.
Social media can be a means by which workers intentionally or accidentally distribute internal, confidential, proprietary, or PII data to outsiders. This may be accomplished by typing in messages or participating in chats in which they reveal confidential information. This can also be accomplished by distributing or publishing sensitive documents. Responses to social media issues can include blocking access to social media sites by adding IP blocks to firewalls and resolution filters to Domain Name System (DNS) queries. Violating workers need to be reprimanded or even terminated.
Establish and Maintain
a Security Awareness, Education,
and Training Program
The successful implementation of a security solution requires changes in user behavior. These changes primarily consist of alterations in normal work activities to comply with the standards, guidelines, and procedures mandated by the security policy. Behavior modification involves some level of learning on the part of the user. To develop and manage security education, training, and awareness, all relevant items of knowledge transference must be clearly identified and programs of presentation, exposure, synergy, and implementation crafted.