
- •Acknowledgments
- •About the Authors
- •About the Technical Editors
- •Contents at a Glance
- •Contents
- •Foreword
- •Introduction
- •Overview of the CISSP Exam
- •The Elements of This Study Guide
- •Study Guide Exam Objectives
- •Objective Map
- •Reader Support for This Book
- •Security 101
- •Confidentiality
- •Integrity
- •Availability
- •Protection Mechanisms
- •Security Boundaries
- •Third-Party Governance
- •Documentation Review
- •Manage the Security Function
- •Alignment of Security Function to Business Strategy, Goals, Mission, and Objectives
- •Organizational Processes
- •Organizational Roles and Responsibilities
- •Security Control Frameworks
- •Due Diligence and Due Care
- •Security Policy, Standards, Procedures, and Guidelines
- •Security Policies
- •Security Standards, Baselines, and Guidelines
- •Security Procedures
- •Threat Modeling
- •Identifying Threats
- •Determining and Diagramming Potential Attacks
- •Performing Reduction Analysis
- •Prioritization and Response
- •Supply Chain Risk Management
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Job Descriptions and Responsibilities
- •Candidate Screening and Hiring
- •Onboarding: Employment Agreements and Policies
- •Employee Oversight
- •Compliance Policy Requirements
- •Privacy Policy Requirements
- •Understand and Apply Risk Management Concepts
- •Risk Terminology and Concepts
- •Asset Valuation
- •Identify Threats and Vulnerabilities
- •Risk Assessment/Analysis
- •Risk Responses
- •Cost vs. Benefit of Security Controls
- •Countermeasure Selection and Implementation
- •Applicable Types of Controls
- •Security Control Assessment
- •Monitoring and Measurement
- •Risk Reporting and Documentation
- •Continuous Improvement
- •Risk Frameworks
- •Social Engineering
- •Social Engineering Principles
- •Eliciting Information
- •Prepending
- •Phishing
- •Spear Phishing
- •Whaling
- •Smishing
- •Vishing
- •Spam
- •Shoulder Surfing
- •Invoice Scams
- •Hoax
- •Impersonation and Masquerading
- •Tailgating and Piggybacking
- •Dumpster Diving
- •Identity Fraud
- •Typo Squatting
- •Influence Campaigns
- •Awareness
- •Training
- •Education
- •Improvements
- •Effectiveness Evaluation
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Planning for Business Continuity
- •Project Scope and Planning
- •Organizational Review
- •BCP Team Selection
- •Resource Requirements
- •Legal and Regulatory Requirements
- •Business Impact Analysis
- •Identifying Priorities
- •Risk Identification
- •Likelihood Assessment
- •Impact Analysis
- •Resource Prioritization
- •Continuity Planning
- •Strategy Development
- •Provisions and Processes
- •Plan Approval and Implementation
- •Plan Approval
- •Plan Implementation
- •Training and Education
- •BCP Documentation
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Categories of Laws
- •Criminal Law
- •Civil Law
- •Administrative Law
- •Laws
- •Computer Crime
- •Intellectual Property (IP)
- •Licensing
- •Import/Export
- •Privacy
- •State Privacy Laws
- •Compliance
- •Contracting and Procurement
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Defining Sensitive Data
- •Defining Data Classifications
- •Defining Asset Classifications
- •Understanding Data States
- •Determining Compliance Requirements
- •Determining Data Security Controls
- •Data Maintenance
- •Data Loss Prevention
- •Marking Sensitive Data and Assets
- •Handling Sensitive Information and Assets
- •Data Collection Limitation
- •Data Location
- •Storing Sensitive Data
- •Data Destruction
- •Ensuring Appropriate Data and Asset Retention
- •Data Protection Methods
- •Digital Rights Management
- •Cloud Access Security Broker
- •Pseudonymization
- •Tokenization
- •Anonymization
- •Understanding Data Roles
- •Data Owners
- •Asset Owners
- •Business/Mission Owners
- •Data Processors and Data Controllers
- •Data Custodians
- •Administrators
- •Users and Subjects
- •Using Security Baselines
- •Comparing Tailoring and Scoping
- •Standards Selection
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Cryptographic Foundations
- •Goals of Cryptography
- •Cryptography Concepts
- •Cryptographic Mathematics
- •Ciphers
- •Modern Cryptography
- •Cryptographic Keys
- •Symmetric Key Algorithms
- •Asymmetric Key Algorithms
- •Hashing Algorithms
- •Symmetric Cryptography
- •Cryptographic Modes of Operation
- •Data Encryption Standard
- •Triple DES
- •International Data Encryption Algorithm
- •Blowfish
- •Skipjack
- •Rivest Ciphers
- •Advanced Encryption Standard
- •CAST
- •Comparison of Symmetric Encryption Algorithms
- •Symmetric Key Management
- •Cryptographic Lifecycle
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Asymmetric Cryptography
- •Public and Private Keys
- •ElGamal
- •Elliptic Curve
- •Diffie–Hellman Key Exchange
- •Quantum Cryptography
- •Hash Functions
- •RIPEMD
- •Comparison of Hash Algorithm Value Lengths
- •Digital Signatures
- •HMAC
- •Digital Signature Standard
- •Public Key Infrastructure
- •Certificates
- •Certificate Authorities
- •Certificate Lifecycle
- •Certificate Formats
- •Asymmetric Key Management
- •Hybrid Cryptography
- •Applied Cryptography
- •Portable Devices
- •Web Applications
- •Steganography and Watermarking
- •Networking
- •Emerging Applications
- •Cryptographic Attacks
- •Salting Saves Passwords
- •Ultra vs. Enigma
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Secure Design Principles
- •Objects and Subjects
- •Closed and Open Systems
- •Secure Defaults
- •Fail Securely
- •Keep It Simple
- •Zero Trust
- •Privacy by Design
- •Trust but Verify
- •Techniques for Ensuring CIA
- •Confinement
- •Bounds
- •Isolation
- •Access Controls
- •Trust and Assurance
- •Trusted Computing Base
- •State Machine Model
- •Information Flow Model
- •Noninterference Model
- •Take-Grant Model
- •Access Control Matrix
- •Bell–LaPadula Model
- •Biba Model
- •Clark–Wilson Model
- •Brewer and Nash Model
- •Goguen–Meseguer Model
- •Sutherland Model
- •Graham–Denning Model
- •Harrison–Ruzzo–Ullman Model
- •Select Controls Based on Systems Security Requirements
- •Common Criteria
- •Authorization to Operate
- •Understand Security Capabilities of Information Systems
- •Memory Protection
- •Virtualization
- •Trusted Platform Module
- •Interfaces
- •Fault Tolerance
- •Encryption/Decryption
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Shared Responsibility
- •Hardware
- •Firmware
- •Client-Based Systems
- •Mobile Code
- •Local Caches
- •Server-Based Systems
- •Large-Scale Parallel Data Systems
- •Grid Computing
- •Peer to Peer
- •Industrial Control Systems
- •Distributed Systems
- •Internet of Things
- •Edge and Fog Computing
- •Static Systems
- •Network-Enabled Devices
- •Cyber-Physical Systems
- •Elements Related to Embedded and Static Systems
- •Security Concerns of Embedded and Static Systems
- •Specialized Devices
- •Microservices
- •Infrastructure as Code
- •Virtualized Systems
- •Virtual Software
- •Virtualized Networking
- •Software-Defined Everything
- •Virtualization Security Management
- •Containerization
- •Serverless Architecture
- •Mobile Devices
- •Mobile Device Security Features
- •Mobile Device Deployment Policies
- •Process Isolation
- •Hardware Segmentation
- •System Security Policy
- •Covert Channels
- •Attacks Based on Design or Coding Flaws
- •Rootkits
- •Incremental Attacks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Apply Security Principles to Site and Facility Design
- •Secure Facility Plan
- •Site Selection
- •Facility Design
- •Equipment Failure
- •Wiring Closets
- •Server Rooms/Data Centers
- •Intrusion Detection Systems
- •Cameras
- •Access Abuses
- •Media Storage Facilities
- •Evidence Storage
- •Restricted and Work Area Security
- •Utility Considerations
- •Fire Prevention, Detection, and Suppression
- •Perimeter Security Controls
- •Internal Security Controls
- •Key Performance Indicators of Physical Security
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •OSI Model
- •History of the OSI Model
- •OSI Functionality
- •Encapsulation/Deencapsulation
- •OSI Layers
- •TCP/IP Model
- •Common Application Layer Protocols
- •SNMPv3
- •Transport Layer Protocols
- •Domain Name System
- •DNS Poisoning
- •Domain Hijacking
- •Internet Protocol (IP) Networking
- •IP Classes
- •ICMP
- •IGMP
- •ARP Concerns
- •Secure Communication Protocols
- •Implications of Multilayer Protocols
- •Converged Protocols
- •Voice over Internet Protocol (VoIP)
- •Software-Defined Networking
- •Microsegmentation
- •Wireless Networks
- •Securing the SSID
- •Wireless Channels
- •Conducting a Site Survey
- •Wireless Security
- •Wi-Fi Protected Setup (WPS)
- •Wireless MAC Filter
- •Wireless Antenna Management
- •Using Captive Portals
- •General Wi-Fi Security Procedure
- •Wireless Communications
- •Wireless Attacks
- •Other Communication Protocols
- •Cellular Networks
- •Content Distribution Networks (CDNs)
- •Secure Network Components
- •Secure Operation of Hardware
- •Common Network Equipment
- •Network Access Control
- •Firewalls
- •Endpoint Security
- •Transmission Media
- •Network Topologies
- •Ethernet
- •Sub-Technologies
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Protocol Security Mechanisms
- •Authentication Protocols
- •Port Security
- •Quality of Service (QoS)
- •Secure Voice Communications
- •Voice over Internet Protocol (VoIP)
- •Vishing and Phreaking
- •PBX Fraud and Abuse
- •Remote Access Security Management
- •Remote Connection Security
- •Plan a Remote Access Security Policy
- •Multimedia Collaboration
- •Remote Meeting
- •Instant Messaging and Chat
- •Load Balancing
- •Virtual IPs and Load Persistence
- •Active-Active vs. Active-Passive
- •Manage Email Security
- •Email Security Goals
- •Understand Email Security Issues
- •Email Security Solutions
- •Virtual Private Network
- •Tunneling
- •How VPNs Work
- •Always-On
- •Common VPN Protocols
- •Switching and Virtual LANs
- •Switch Eavesdropping
- •Private IP Addresses
- •Stateful NAT
- •Automatic Private IP Addressing
- •Third-Party Connectivity
- •Circuit Switching
- •Packet Switching
- •Virtual Circuits
- •Fiber-Optic Links
- •Security Control Characteristics
- •Transparency
- •Transmission Management Mechanisms
- •Prevent or Mitigate Network Attacks
- •Eavesdropping
- •Modification Attacks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Controlling Access to Assets
- •Controlling Physical and Logical Access
- •The CIA Triad and Access Controls
- •Managing Identification and Authentication
- •Comparing Subjects and Objects
- •Registration, Proofing, and Establishment of Identity
- •Authorization and Accountability
- •Authentication Factors Overview
- •Something You Know
- •Something You Have
- •Something You Are
- •Multifactor Authentication (MFA)
- •Two-Factor Authentication with Authenticator Apps
- •Passwordless Authentication
- •Device Authentication
- •Service Authentication
- •Mutual Authentication
- •Implementing Identity Management
- •Single Sign-On
- •SSO and Federated Identities
- •Credential Management Systems
- •Credential Manager Apps
- •Scripted Access
- •Session Management
- •Provisioning and Onboarding
- •Deprovisioning and Offboarding
- •Defining New Roles
- •Account Maintenance
- •Account Access Review
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Comparing Access Control Models
- •Comparing Permissions, Rights, and Privileges
- •Understanding Authorization Mechanisms
- •Defining Requirements with a Security Policy
- •Introducing Access Control Models
- •Discretionary Access Control
- •Nondiscretionary Access Control
- •Implementing Authentication Systems
- •Implementing SSO on the Internet
- •Implementing SSO on Internal Networks
- •Understanding Access Control Attacks
- •Crackers, Hackers, and Attackers
- •Risk Elements
- •Common Access Control Attacks
- •Core Protection Methods
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Security Testing
- •Security Assessments
- •Security Audits
- •Performing Vulnerability Assessments
- •Describing Vulnerabilities
- •Vulnerability Scans
- •Penetration Testing
- •Compliance Checks
- •Code Review and Testing
- •Interface Testing
- •Misuse Case Testing
- •Test Coverage Analysis
- •Website Monitoring
- •Implementing Security Management Processes
- •Log Reviews
- •Account Management
- •Disaster Recovery and Business Continuity
- •Training and Awareness
- •Key Performance and Risk Indicators
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Need to Know and Least Privilege
- •Separation of Duties (SoD) and Responsibilities
- •Two-Person Control
- •Job Rotation
- •Mandatory Vacations
- •Privileged Account Management
- •Service Level Agreements (SLAs)
- •Addressing Personnel Safety and Security
- •Duress
- •Travel
- •Emergency Management
- •Security Training and Awareness
- •Provision Resources Securely
- •Information and Asset Ownership
- •Asset Management
- •Apply Resource Protection
- •Media Management
- •Media Protection Techniques
- •Managed Services in the Cloud
- •Shared Responsibility with Cloud Service Models
- •Scalability and Elasticity
- •Provisioning
- •Baselining
- •Using Images for Baselining
- •Automation
- •Managing Change
- •Change Management
- •Versioning
- •Configuration Documentation
- •Managing Patches and Reducing Vulnerabilities
- •Systems to Manage
- •Patch Management
- •Vulnerability Management
- •Vulnerability Scans
- •Common Vulnerabilities and Exposures
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Conducting Incident Management
- •Defining an Incident
- •Incident Management Steps
- •Basic Preventive Measures
- •Understanding Attacks
- •Intrusion Detection and Prevention Systems
- •Specific Preventive Measures
- •Logging and Monitoring
- •The Role of Monitoring
- •Log Management
- •Egress Monitoring
- •Automating Incident Response
- •Understanding SOAR
- •Threat Intelligence
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •The Nature of Disaster
- •Natural Disasters
- •Human-Made Disasters
- •Protecting Hard Drives
- •Protecting Servers
- •Protecting Power Sources
- •Trusted Recovery
- •Quality of Service
- •Recovery Strategy
- •Business Unit and Functional Priorities
- •Crisis Management
- •Emergency Communications
- •Workgroup Recovery
- •Alternate Processing Sites
- •Database Recovery
- •Recovery Plan Development
- •Emergency Response
- •Personnel and Communications
- •Assessment
- •Backups and Off-site Storage
- •Software Escrow Arrangements
- •Utilities
- •Logistics and Supplies
- •Recovery vs. Restoration
- •Testing and Maintenance
- •Structured Walk-Through
- •Simulation Test
- •Parallel Test
- •Lessons Learned
- •Maintenance
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Investigations
- •Investigation Types
- •Evidence
- •Investigation Process
- •Major Categories of Computer Crime
- •Military and Intelligence Attacks
- •Business Attacks
- •Financial Attacks
- •Terrorist Attacks
- •Grudge Attacks
- •Thrill Attacks
- •Hacktivists
- •Ethics
- •Organizational Code of Ethics
- •(ISC)2 Code of Ethics
- •Ethics and the Internet
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Software Development
- •Systems Development Lifecycle
- •Lifecycle Models
- •Gantt Charts and PERT
- •Change and Configuration Management
- •The DevOps Approach
- •Application Programming Interfaces
- •Software Testing
- •Code Repositories
- •Service-Level Agreements
- •Third-Party Software Acquisition
- •Establishing Databases and Data Warehousing
- •Database Management System Architecture
- •Database Transactions
- •Security for Multilevel Databases
- •Open Database Connectivity
- •NoSQL
- •Expert Systems
- •Machine Learning
- •Neural Networks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Malware
- •Sources of Malicious Code
- •Viruses
- •Logic Bombs
- •Trojan Horses
- •Worms
- •Spyware and Adware
- •Ransomware
- •Malicious Scripts
- •Zero-Day Attacks
- •Malware Prevention
- •Platforms Vulnerable to Malware
- •Antimalware Software
- •Integrity Monitoring
- •Advanced Threat Protection
- •Application Attacks
- •Buffer Overflows
- •Time of Check to Time of Use
- •Backdoors
- •Privilege Escalation and Rootkits
- •Injection Vulnerabilities
- •SQL Injection Attacks
- •Code Injection Attacks
- •Command Injection Attacks
- •Exploiting Authorization Vulnerabilities
- •Insecure Direct Object References
- •Directory Traversal
- •File Inclusion
- •Request Forgery
- •Session Hijacking
- •Application Security Controls
- •Input Validation
- •Web Application Firewalls
- •Database Security
- •Code Security
- •Secure Coding Practices
- •Source Code Comments
- •Error Handling
- •Hard-Coded Credentials
- •Memory Management
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Chapter 2: Personnel Security and Risk Management Concepts
- •Chapter 3: Business Continuity Planning
- •Chapter 4: Laws, Regulations, and Compliance
- •Chapter 5: Protecting Security of Assets
- •Chapter 10: Physical Security Requirements
- •Chapter 11: Secure Network Architecture and Components
- •Chapter 12: Secure Communications and Network Attacks
- •Chapter 17: Preventing and Responding to Incidents
- •Chapter 18: Disaster Recovery Planning
- •Chapter 19: Investigations and Ethics
- •Chapter 20: Software Development Security
- •Chapter 21: Malicious Code and Application Attacks
- •Chapter 3: Business Continuity Planning
- •Chapter 5: Protecting Security of Assets
- •Chapter 6: Cryptography and Symmetric Key Algorithms
- •Chapter 12: Secure Communications and Network Attacks
- •Chapter 15: Security Assessment and Testing
- •Chapter 17: Preventing and Responding to Incidents
- •Chapter 18: Disaster Recovery Planning
- •Chapter 19: Investigations and Ethics
- •Chapter 21: Malicious Code and Application Attacks
- •Index
Exam Essentials |
987 |
Summary
Data is the most valuable resource many organizations possess. Therefore, it’s critical that information security practitioners understand the necessity of safeguarding the data itself and the systems and applications that assist in the processing of that data. Protections against malicious code, database vulnerabilities, and system/application development flaws must be implemented in every technology-aware organization.
By this point, you no doubt recognize the importance of placing adequate access controls and audit trails on these valuable information resources. Database security is a rapidly growing field; if databases play a major role in your security duties, take the time to sit down with database administrators, courses, and textbooks and learn the underlying theory. It’s a valuable investment.
Finally, various controls can be put into place during the system and application development process to ensure that the end product of these processes is compatible with operation in a secure environment. Such controls include process isolation, hardware segmentation, abstraction, and contractual arrangements such as service-level agreements (SLAs). Security should always be introduced in the early planning phases of any development project and continually monitored throughout the design, development, deployment, and maintenance phases of production.
Exam Essentials
Explain the basic architecture of a relational database management system (RDBMS). Know the structure of relational databases. Be able to explain the function of tables (relations), rows (records/tuples), and columns (fields/attributes). Know how relationships are defined between tables and the roles of various types of keys. Describe the database security threats posed by aggregation and inference.
Explain how expert systems, machine learning, and neural networks function. Expert systems consist of two main components: a knowledge base that contains a series of “if/then” rules and an inference engine that uses that information to draw conclusions about other data. Machine learning techniques attempt to algorithmically discover knowledge from datasets. Neural networks simulate the functioning of the human mind to a limited extent by arranging a series of layered calculations to solve problems. Neural networks require extensive training on a particular problem before they are able to offer solutions.
Understand the models of systems development. Know that the waterfall model describes a sequential development process that results in the development of a finished product. Developers may step back only one phase in the process if errors are discovered. The spiral model uses several iterations of the waterfall model to produce a number of fully specified and tested prototypes. Agile development models place an emphasis on the needs of the customer and quickly developing new functionality that meets those needs in an iterative fashion.
Explain the Scrum approach to Agile software development. Scrum is an organized approach to implementing the Agile philosophy. It relies on daily scrum meetings to organize
988 Chapter 20 ■ Software Development Security
and review work. Development focuses on short sprints of activity that deliver finished products. Integrated Product Teams (IPTs) are an early effort at this approach that was used by the U.S. Department of Defense.
Describe software development maturity models. Know that maturity models help software organizations improve the maturity and quality of their software processes by implementing an evolutionary path from ad hoc, chaotic processes to mature, disciplined software processes. Be able to describe the SW-CMM, IDEAL, and SAMM models.
Understand the importance of change and configuration management. Know the three basic components of change control—request control, change control, and release control— and how they contribute to security. Explain how configuration management controls the versions of software used in an organization. Understand how the auditing and logging of changes mitigates risk to the organization.
Understand the importance of testing. Software testing should be designed as part of the development process. Testing should be used as a management tool to improve the design, development, and production processes.
Explain the role of DevOps and DevSecOps in the modern enterprise. DevOps approaches seek to integrate software development and operations activities by embracing automation and collaboration between teams. DevSecOps approaches expand on the DevOps model by introducing security operations activities into the integrated model. Continuous integration and delivery (CI/CD) techniques automate the DevOps and DevSecOps pipelines.
Know the role of different coding tools in software development ecosystems. Developers write code in different programming languages, which is then either compiled into
machine language or executed through an interpreter. Developers may make use of software development tool sets and integrated development environments to facilitate the code writing process. Software libraries create shared and reusable code, whereas code repositories provide a management platform for the software development process.
Explain the impact of acquired software on the organization. Organizations may purchase commercial off-the-shelf (COTS) software to meet their requirements, and they may also rely on free open source software (OSS). All of this software expands the potential attack surface and requires security review and testing.
Written Lab
1.What is the main purpose of a primary key in a database table?
2.What is polyinstantiation?
3.Explain the difference between static and dynamic analysis of application code.
4.Why should both static and dynamic analysis of application code be used together whenever possible?
5.Explain the difference between supervised and unsupervised machine learning.
Review Questions |
989 |
Review Questions
1.Christine is helping her organization implement a DevOps approach to deploying code. Which one of the following is not a component of the DevOps model?
A.Information security
B.Software development
C.Quality assurance
D.IT operations
2.Bob is developing a software application and has a field where users may enter a date. He wants to ensure that the values provided by the users are accurate dates to prevent security issues. What technique should Bob use?
A.Polyinstantiation
B.Input validation
C.Contamination
D.Screening
3.Vincent is a software developer who is working through a backlog of change tasks. He is not sure which tasks should have the highest priority. What portion of the change management process would help him to prioritize tasks?
A.Release control
B.Configuration control
C.Request control
D.Change audit
4.Frank is conducting a risk analysis of his software development environment and, as a mitigation measure, would like to introduce an approach to failure management that places the system in a high level of security in the event of a failure. What approach should he use?
A.Fail-open
B.Fail mitigation
C.Fail-secure
D.Fail clear
5.What software development model uses a seven-stage approach with a feedback loop that allows progress one step backward?
A.Boyce-Codd
B.Iterative waterfall
C.Spiral
D.Agile
990 Chapter 20 ■ Software Development Security
6.Jane is conducting a threat assessment using threat modeling techniques as she develops security requirements for a software package her team is developing. Which business function is she engaging in under the Software Assurance Maturity Model (SAMM)?
A.Governance
B.Design
C.Implementation
D.Verification
7.Which one of the following key types is used to enforce referential integrity between database tables?
A.Candidate key
B.Primary key
C.Foreign key
D.Alternate key
8.Richard believes that a database user is misusing his privileges to gain information about the company’s overall business trends by issuing queries that combine data from a large number of records. What process is the database user taking advantage of?
A.Inference
B.Contamination
C.Polyinstantiation
D.Aggregation
9.What database technique can be used to prevent unauthorized users from determining classified information by noticing the absence of information normally available to them?
A.Inference
B.Manipulation
C.Polyinstantiation
D.Aggregation
10.Which one of the following is not a principle of Agile development?
A.Satisfy the customer through early and continuous delivery.
B.Businesspeople and developers work together.
C.Pay continuous attention to technical excellence.
D.Prioritize security over other requirements.
11.What type of information is used to form the basis of an expert system’s decision- making process?
A.A series of weighted layered computations
B.Combined input from a number of human experts, weighted according to past performance
Review Questions |
991 |
C.A series of “if/then” rules codified in a knowledge base
D.A biological decision-making process that simulates the reasoning process used by the human mind
12.In which phase of the SW-CMM does an organization use quantitative measures to gain a detailed understanding of the development process?
A.Initial
B.Repeatable
C.Defined
D.Managed
13.Which of the following acts as a proxy between an application and a database to support interaction and simplify the work of programmers?
A.SDLC
B.ODBC
C.PCI DSS
D.Abstraction
14.In what type of software testing does the tester have access to the underlying source code?
A.Static testing
B.Dynamic testing
C.Cross-site scripting testing
D.Black-box testing
15.What type of chart provides a graphical illustration of a schedule that helps to plan, coordinate, and track project tasks?
A.Gantt
B.Venn
C.Bar
D.PERT
16.Which database security risk occurs when data from a higher classification level is mixed with data from a lower classification level?
A.Aggregation
B.Inference
C.Contamination
D.Polyinstantiation
992 Chapter 20 ■ Software Development Security
17.Tonya is performing a risk assessment of a third-party software package for use within her organization. She plans to purchase a product from a vendor that is very popular in her industry. What term best describes this software?
A.Open source
B.Custom-developed
C.ERP
D.COTS
18.Which one of the following is not part of the change management process?
A.Request control
B.Release control
C.Configuration audit
D.Change control
19.What transaction management principle ensures that two transactions do not interfere with each other as they operate on the same data?
A.Atomicity
B.Consistency
C.Isolation
D.Durability
20.Tom built a database table consisting of the names, telephone numbers, and customer IDs for his business. The table contains information on 30 customers. What is the degree of this table?
A.Two
B.Three
C.Thirty
D.Undefined

Chapter
21
Malicious Code and
Application Attacks
THE CISSP EXAMTOPICS COVERED INTHIS CHAPTER INCLUDE:
Domain 3.0: Security Architecture and Engineering
■■3.7 Understand methods of cryptanalytic attacks
■■3.7.13 Ransomware
Domain 7.0: Security Operations
■■7.2 Conduct logging and monitoring activities
■■7.2.7 User and Entity Behavior Analytics (UEBA)
■■7.7 Operate and maintain detective and preventative measures
■■7.7.7 Anti-malware
Domain 8.0: Software Development Security
■■8.2 Identify and apply security controls in software development ecosystems
■■8.3 Assess the effectiveness of software security
■■8.3.2 Risk analysis and mitigation
■■8.5 Define and apply secure coding guidelines and standards
■■8.5.1 Security weaknesses and vulnerabilities at the source-code level