
- •Acknowledgments
- •About the Authors
- •About the Technical Editors
- •Contents at a Glance
- •Contents
- •Foreword
- •Introduction
- •Overview of the CISSP Exam
- •The Elements of This Study Guide
- •Study Guide Exam Objectives
- •Objective Map
- •Reader Support for This Book
- •Security 101
- •Confidentiality
- •Integrity
- •Availability
- •Protection Mechanisms
- •Security Boundaries
- •Third-Party Governance
- •Documentation Review
- •Manage the Security Function
- •Alignment of Security Function to Business Strategy, Goals, Mission, and Objectives
- •Organizational Processes
- •Organizational Roles and Responsibilities
- •Security Control Frameworks
- •Due Diligence and Due Care
- •Security Policy, Standards, Procedures, and Guidelines
- •Security Policies
- •Security Standards, Baselines, and Guidelines
- •Security Procedures
- •Threat Modeling
- •Identifying Threats
- •Determining and Diagramming Potential Attacks
- •Performing Reduction Analysis
- •Prioritization and Response
- •Supply Chain Risk Management
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Job Descriptions and Responsibilities
- •Candidate Screening and Hiring
- •Onboarding: Employment Agreements and Policies
- •Employee Oversight
- •Compliance Policy Requirements
- •Privacy Policy Requirements
- •Understand and Apply Risk Management Concepts
- •Risk Terminology and Concepts
- •Asset Valuation
- •Identify Threats and Vulnerabilities
- •Risk Assessment/Analysis
- •Risk Responses
- •Cost vs. Benefit of Security Controls
- •Countermeasure Selection and Implementation
- •Applicable Types of Controls
- •Security Control Assessment
- •Monitoring and Measurement
- •Risk Reporting and Documentation
- •Continuous Improvement
- •Risk Frameworks
- •Social Engineering
- •Social Engineering Principles
- •Eliciting Information
- •Prepending
- •Phishing
- •Spear Phishing
- •Whaling
- •Smishing
- •Vishing
- •Spam
- •Shoulder Surfing
- •Invoice Scams
- •Hoax
- •Impersonation and Masquerading
- •Tailgating and Piggybacking
- •Dumpster Diving
- •Identity Fraud
- •Typo Squatting
- •Influence Campaigns
- •Awareness
- •Training
- •Education
- •Improvements
- •Effectiveness Evaluation
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Planning for Business Continuity
- •Project Scope and Planning
- •Organizational Review
- •BCP Team Selection
- •Resource Requirements
- •Legal and Regulatory Requirements
- •Business Impact Analysis
- •Identifying Priorities
- •Risk Identification
- •Likelihood Assessment
- •Impact Analysis
- •Resource Prioritization
- •Continuity Planning
- •Strategy Development
- •Provisions and Processes
- •Plan Approval and Implementation
- •Plan Approval
- •Plan Implementation
- •Training and Education
- •BCP Documentation
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Categories of Laws
- •Criminal Law
- •Civil Law
- •Administrative Law
- •Laws
- •Computer Crime
- •Intellectual Property (IP)
- •Licensing
- •Import/Export
- •Privacy
- •State Privacy Laws
- •Compliance
- •Contracting and Procurement
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Defining Sensitive Data
- •Defining Data Classifications
- •Defining Asset Classifications
- •Understanding Data States
- •Determining Compliance Requirements
- •Determining Data Security Controls
- •Data Maintenance
- •Data Loss Prevention
- •Marking Sensitive Data and Assets
- •Handling Sensitive Information and Assets
- •Data Collection Limitation
- •Data Location
- •Storing Sensitive Data
- •Data Destruction
- •Ensuring Appropriate Data and Asset Retention
- •Data Protection Methods
- •Digital Rights Management
- •Cloud Access Security Broker
- •Pseudonymization
- •Tokenization
- •Anonymization
- •Understanding Data Roles
- •Data Owners
- •Asset Owners
- •Business/Mission Owners
- •Data Processors and Data Controllers
- •Data Custodians
- •Administrators
- •Users and Subjects
- •Using Security Baselines
- •Comparing Tailoring and Scoping
- •Standards Selection
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Cryptographic Foundations
- •Goals of Cryptography
- •Cryptography Concepts
- •Cryptographic Mathematics
- •Ciphers
- •Modern Cryptography
- •Cryptographic Keys
- •Symmetric Key Algorithms
- •Asymmetric Key Algorithms
- •Hashing Algorithms
- •Symmetric Cryptography
- •Cryptographic Modes of Operation
- •Data Encryption Standard
- •Triple DES
- •International Data Encryption Algorithm
- •Blowfish
- •Skipjack
- •Rivest Ciphers
- •Advanced Encryption Standard
- •CAST
- •Comparison of Symmetric Encryption Algorithms
- •Symmetric Key Management
- •Cryptographic Lifecycle
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Asymmetric Cryptography
- •Public and Private Keys
- •ElGamal
- •Elliptic Curve
- •Diffie–Hellman Key Exchange
- •Quantum Cryptography
- •Hash Functions
- •RIPEMD
- •Comparison of Hash Algorithm Value Lengths
- •Digital Signatures
- •HMAC
- •Digital Signature Standard
- •Public Key Infrastructure
- •Certificates
- •Certificate Authorities
- •Certificate Lifecycle
- •Certificate Formats
- •Asymmetric Key Management
- •Hybrid Cryptography
- •Applied Cryptography
- •Portable Devices
- •Web Applications
- •Steganography and Watermarking
- •Networking
- •Emerging Applications
- •Cryptographic Attacks
- •Salting Saves Passwords
- •Ultra vs. Enigma
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Secure Design Principles
- •Objects and Subjects
- •Closed and Open Systems
- •Secure Defaults
- •Fail Securely
- •Keep It Simple
- •Zero Trust
- •Privacy by Design
- •Trust but Verify
- •Techniques for Ensuring CIA
- •Confinement
- •Bounds
- •Isolation
- •Access Controls
- •Trust and Assurance
- •Trusted Computing Base
- •State Machine Model
- •Information Flow Model
- •Noninterference Model
- •Take-Grant Model
- •Access Control Matrix
- •Bell–LaPadula Model
- •Biba Model
- •Clark–Wilson Model
- •Brewer and Nash Model
- •Goguen–Meseguer Model
- •Sutherland Model
- •Graham–Denning Model
- •Harrison–Ruzzo–Ullman Model
- •Select Controls Based on Systems Security Requirements
- •Common Criteria
- •Authorization to Operate
- •Understand Security Capabilities of Information Systems
- •Memory Protection
- •Virtualization
- •Trusted Platform Module
- •Interfaces
- •Fault Tolerance
- •Encryption/Decryption
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Shared Responsibility
- •Hardware
- •Firmware
- •Client-Based Systems
- •Mobile Code
- •Local Caches
- •Server-Based Systems
- •Large-Scale Parallel Data Systems
- •Grid Computing
- •Peer to Peer
- •Industrial Control Systems
- •Distributed Systems
- •Internet of Things
- •Edge and Fog Computing
- •Static Systems
- •Network-Enabled Devices
- •Cyber-Physical Systems
- •Elements Related to Embedded and Static Systems
- •Security Concerns of Embedded and Static Systems
- •Specialized Devices
- •Microservices
- •Infrastructure as Code
- •Virtualized Systems
- •Virtual Software
- •Virtualized Networking
- •Software-Defined Everything
- •Virtualization Security Management
- •Containerization
- •Serverless Architecture
- •Mobile Devices
- •Mobile Device Security Features
- •Mobile Device Deployment Policies
- •Process Isolation
- •Hardware Segmentation
- •System Security Policy
- •Covert Channels
- •Attacks Based on Design or Coding Flaws
- •Rootkits
- •Incremental Attacks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Apply Security Principles to Site and Facility Design
- •Secure Facility Plan
- •Site Selection
- •Facility Design
- •Equipment Failure
- •Wiring Closets
- •Server Rooms/Data Centers
- •Intrusion Detection Systems
- •Cameras
- •Access Abuses
- •Media Storage Facilities
- •Evidence Storage
- •Restricted and Work Area Security
- •Utility Considerations
- •Fire Prevention, Detection, and Suppression
- •Perimeter Security Controls
- •Internal Security Controls
- •Key Performance Indicators of Physical Security
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •OSI Model
- •History of the OSI Model
- •OSI Functionality
- •Encapsulation/Deencapsulation
- •OSI Layers
- •TCP/IP Model
- •Common Application Layer Protocols
- •SNMPv3
- •Transport Layer Protocols
- •Domain Name System
- •DNS Poisoning
- •Domain Hijacking
- •Internet Protocol (IP) Networking
- •IP Classes
- •ICMP
- •IGMP
- •ARP Concerns
- •Secure Communication Protocols
- •Implications of Multilayer Protocols
- •Converged Protocols
- •Voice over Internet Protocol (VoIP)
- •Software-Defined Networking
- •Microsegmentation
- •Wireless Networks
- •Securing the SSID
- •Wireless Channels
- •Conducting a Site Survey
- •Wireless Security
- •Wi-Fi Protected Setup (WPS)
- •Wireless MAC Filter
- •Wireless Antenna Management
- •Using Captive Portals
- •General Wi-Fi Security Procedure
- •Wireless Communications
- •Wireless Attacks
- •Other Communication Protocols
- •Cellular Networks
- •Content Distribution Networks (CDNs)
- •Secure Network Components
- •Secure Operation of Hardware
- •Common Network Equipment
- •Network Access Control
- •Firewalls
- •Endpoint Security
- •Transmission Media
- •Network Topologies
- •Ethernet
- •Sub-Technologies
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Protocol Security Mechanisms
- •Authentication Protocols
- •Port Security
- •Quality of Service (QoS)
- •Secure Voice Communications
- •Voice over Internet Protocol (VoIP)
- •Vishing and Phreaking
- •PBX Fraud and Abuse
- •Remote Access Security Management
- •Remote Connection Security
- •Plan a Remote Access Security Policy
- •Multimedia Collaboration
- •Remote Meeting
- •Instant Messaging and Chat
- •Load Balancing
- •Virtual IPs and Load Persistence
- •Active-Active vs. Active-Passive
- •Manage Email Security
- •Email Security Goals
- •Understand Email Security Issues
- •Email Security Solutions
- •Virtual Private Network
- •Tunneling
- •How VPNs Work
- •Always-On
- •Common VPN Protocols
- •Switching and Virtual LANs
- •Switch Eavesdropping
- •Private IP Addresses
- •Stateful NAT
- •Automatic Private IP Addressing
- •Third-Party Connectivity
- •Circuit Switching
- •Packet Switching
- •Virtual Circuits
- •Fiber-Optic Links
- •Security Control Characteristics
- •Transparency
- •Transmission Management Mechanisms
- •Prevent or Mitigate Network Attacks
- •Eavesdropping
- •Modification Attacks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Controlling Access to Assets
- •Controlling Physical and Logical Access
- •The CIA Triad and Access Controls
- •Managing Identification and Authentication
- •Comparing Subjects and Objects
- •Registration, Proofing, and Establishment of Identity
- •Authorization and Accountability
- •Authentication Factors Overview
- •Something You Know
- •Something You Have
- •Something You Are
- •Multifactor Authentication (MFA)
- •Two-Factor Authentication with Authenticator Apps
- •Passwordless Authentication
- •Device Authentication
- •Service Authentication
- •Mutual Authentication
- •Implementing Identity Management
- •Single Sign-On
- •SSO and Federated Identities
- •Credential Management Systems
- •Credential Manager Apps
- •Scripted Access
- •Session Management
- •Provisioning and Onboarding
- •Deprovisioning and Offboarding
- •Defining New Roles
- •Account Maintenance
- •Account Access Review
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Comparing Access Control Models
- •Comparing Permissions, Rights, and Privileges
- •Understanding Authorization Mechanisms
- •Defining Requirements with a Security Policy
- •Introducing Access Control Models
- •Discretionary Access Control
- •Nondiscretionary Access Control
- •Implementing Authentication Systems
- •Implementing SSO on the Internet
- •Implementing SSO on Internal Networks
- •Understanding Access Control Attacks
- •Crackers, Hackers, and Attackers
- •Risk Elements
- •Common Access Control Attacks
- •Core Protection Methods
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Security Testing
- •Security Assessments
- •Security Audits
- •Performing Vulnerability Assessments
- •Describing Vulnerabilities
- •Vulnerability Scans
- •Penetration Testing
- •Compliance Checks
- •Code Review and Testing
- •Interface Testing
- •Misuse Case Testing
- •Test Coverage Analysis
- •Website Monitoring
- •Implementing Security Management Processes
- •Log Reviews
- •Account Management
- •Disaster Recovery and Business Continuity
- •Training and Awareness
- •Key Performance and Risk Indicators
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Need to Know and Least Privilege
- •Separation of Duties (SoD) and Responsibilities
- •Two-Person Control
- •Job Rotation
- •Mandatory Vacations
- •Privileged Account Management
- •Service Level Agreements (SLAs)
- •Addressing Personnel Safety and Security
- •Duress
- •Travel
- •Emergency Management
- •Security Training and Awareness
- •Provision Resources Securely
- •Information and Asset Ownership
- •Asset Management
- •Apply Resource Protection
- •Media Management
- •Media Protection Techniques
- •Managed Services in the Cloud
- •Shared Responsibility with Cloud Service Models
- •Scalability and Elasticity
- •Provisioning
- •Baselining
- •Using Images for Baselining
- •Automation
- •Managing Change
- •Change Management
- •Versioning
- •Configuration Documentation
- •Managing Patches and Reducing Vulnerabilities
- •Systems to Manage
- •Patch Management
- •Vulnerability Management
- •Vulnerability Scans
- •Common Vulnerabilities and Exposures
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Conducting Incident Management
- •Defining an Incident
- •Incident Management Steps
- •Basic Preventive Measures
- •Understanding Attacks
- •Intrusion Detection and Prevention Systems
- •Specific Preventive Measures
- •Logging and Monitoring
- •The Role of Monitoring
- •Log Management
- •Egress Monitoring
- •Automating Incident Response
- •Understanding SOAR
- •Threat Intelligence
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •The Nature of Disaster
- •Natural Disasters
- •Human-Made Disasters
- •Protecting Hard Drives
- •Protecting Servers
- •Protecting Power Sources
- •Trusted Recovery
- •Quality of Service
- •Recovery Strategy
- •Business Unit and Functional Priorities
- •Crisis Management
- •Emergency Communications
- •Workgroup Recovery
- •Alternate Processing Sites
- •Database Recovery
- •Recovery Plan Development
- •Emergency Response
- •Personnel and Communications
- •Assessment
- •Backups and Off-site Storage
- •Software Escrow Arrangements
- •Utilities
- •Logistics and Supplies
- •Recovery vs. Restoration
- •Testing and Maintenance
- •Structured Walk-Through
- •Simulation Test
- •Parallel Test
- •Lessons Learned
- •Maintenance
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Investigations
- •Investigation Types
- •Evidence
- •Investigation Process
- •Major Categories of Computer Crime
- •Military and Intelligence Attacks
- •Business Attacks
- •Financial Attacks
- •Terrorist Attacks
- •Grudge Attacks
- •Thrill Attacks
- •Hacktivists
- •Ethics
- •Organizational Code of Ethics
- •(ISC)2 Code of Ethics
- •Ethics and the Internet
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Software Development
- •Systems Development Lifecycle
- •Lifecycle Models
- •Gantt Charts and PERT
- •Change and Configuration Management
- •The DevOps Approach
- •Application Programming Interfaces
- •Software Testing
- •Code Repositories
- •Service-Level Agreements
- •Third-Party Software Acquisition
- •Establishing Databases and Data Warehousing
- •Database Management System Architecture
- •Database Transactions
- •Security for Multilevel Databases
- •Open Database Connectivity
- •NoSQL
- •Expert Systems
- •Machine Learning
- •Neural Networks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Malware
- •Sources of Malicious Code
- •Viruses
- •Logic Bombs
- •Trojan Horses
- •Worms
- •Spyware and Adware
- •Ransomware
- •Malicious Scripts
- •Zero-Day Attacks
- •Malware Prevention
- •Platforms Vulnerable to Malware
- •Antimalware Software
- •Integrity Monitoring
- •Advanced Threat Protection
- •Application Attacks
- •Buffer Overflows
- •Time of Check to Time of Use
- •Backdoors
- •Privilege Escalation and Rootkits
- •Injection Vulnerabilities
- •SQL Injection Attacks
- •Code Injection Attacks
- •Command Injection Attacks
- •Exploiting Authorization Vulnerabilities
- •Insecure Direct Object References
- •Directory Traversal
- •File Inclusion
- •Request Forgery
- •Session Hijacking
- •Application Security Controls
- •Input Validation
- •Web Application Firewalls
- •Database Security
- •Code Security
- •Secure Coding Practices
- •Source Code Comments
- •Error Handling
- •Hard-Coded Credentials
- •Memory Management
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Chapter 2: Personnel Security and Risk Management Concepts
- •Chapter 3: Business Continuity Planning
- •Chapter 4: Laws, Regulations, and Compliance
- •Chapter 5: Protecting Security of Assets
- •Chapter 10: Physical Security Requirements
- •Chapter 11: Secure Network Architecture and Components
- •Chapter 12: Secure Communications and Network Attacks
- •Chapter 17: Preventing and Responding to Incidents
- •Chapter 18: Disaster Recovery Planning
- •Chapter 19: Investigations and Ethics
- •Chapter 20: Software Development Security
- •Chapter 21: Malicious Code and Application Attacks
- •Chapter 3: Business Continuity Planning
- •Chapter 5: Protecting Security of Assets
- •Chapter 6: Cryptography and Symmetric Key Algorithms
- •Chapter 12: Secure Communications and Network Attacks
- •Chapter 15: Security Assessment and Testing
- •Chapter 17: Preventing and Responding to Incidents
- •Chapter 18: Disaster Recovery Planning
- •Chapter 19: Investigations and Ethics
- •Chapter 21: Malicious Code and Application Attacks
- •Index
626 Chapter 12 ■ Secure Communications and Network Attacks
Eavesdropping
As the name suggests, eavesdropping is listening to communication traffic for the purpose of duplicating it. The duplication can take the form of recording data to a storage device or using an extraction program that dynamically attempts to extract the original content from the traffic stream. Once a copy of traffic content is in the hands of an attacker, they can often extract many forms of confidential information, such as usernames, passwords, process procedures, and data.
Eavesdropping usually requires physical access to the IT infrastructure to connect a physical recording device to an open port or cable splice or to install a software-recording tool onto the system. Eavesdropping is often facilitated by the use of a network traffic capture or monitoring program or a protocol analyzer system (often called a sniffer). Eavesdropping devices and software are usually difficult to detect because they are used in passive attacks. When eavesdropping or wiretapping is transformed into altering or injecting communications, the attack is considered an active attack.
You can combat eavesdropping by maintaining physical access security to prevent unauthorized personnel from accessing your IT infrastructure. As for protecting communications that occur outside your network or for protecting against internal attackers, using encryption (such as IPsec or SSH) and onetime authentication methods (onetime pads or token devices) on communication traffic will greatly reduce the effectiveness and timeliness of eavesdropping. Application allow listings should also be considered as a means to prevent the execution of unauthorized software, such as sniffers.
Modification Attacks
In modification attacks, captured packets are altered and then played against a system. Modified packets are designed to bypass the restrictions of improved authentication mechanisms and session sequencing. Countermeasures to modification replay attacks include using digital signature verifications and packet checksum verification (i.e., integrity checking).
Summary
Transmission Control Protocol/Internet Protocol (TCP/IP) is the primary protocol suite used on most networks and on the internet. It is a robust protocol suite, but it has numerous security deficiencies. Authentication and encryption need to be implemented to account for TCP/ IP’s deficiencies.
When securing communication channels, be sure to address voice, remote access, multimedia collaboration, data communications (such as email), and virtualized networks.
Secure voice communications can be achieved by evaluating and hardening PSTN, PBX, mobile, and VoIP solutions. VoIP security is often achieved through general network security practices and using Secure Real-time Transport Protocol (SRTP).
Summary 627
Remote access security management requires security system designers to address the hardware and software components of the implementation along with policy issues, work task issues, and encryption issues. This includes deployment of secure communication protocols. Secure authentication for both local and remote connections is an important foundational element of overall security.
Maintaining control over communication pathways is essential to supporting confidentiality, integrity, and availability for network, voice, and other forms of communication. Numerous attacks are focused on intercepting, blocking, or otherwise interfering with the transfer of data from one location to another. Fortunately, there are also reasonable countermeasures to reduce or even eliminate many of these threats.
VPNs are a common means to achieve data communications security. VPNs are based on encrypted tunneling. Tunneling, or encapsulation, is a means by which messages in one protocol can be transported over another network or communications system using a second protocol. VPN solutions include IPsec, TLS, SSH, L2TP, and PPTP.
Telecommuting, or remote connectivity, has become a common feature of business computing. When remote access capabilities are deployed in any environment, security must be considered and implemented to provide protection for your private network against remote access complications. Remote access users should be stringently authenticated before being granted access. Remote access services include Voice over IP (VoIP), application streaming, VDI, multimedia collaboration, and instant messaging.
Email is insecure unless you take steps to secure it. To secure email, you should provide for nonrepudiation, restrict access to authorized users, make sure integrity is maintained, authenticate the message source, verify delivery, and classify sensitive content. These issues must be addressed in a security policy before they can be implemented in a solution. They often take the form of acceptable use policies, access controls, privacy declarations, email management procedures, and backup and retention policies.
Email is a common delivery mechanism for malicious code. Filtering attachments, using antivirus software, and educating users are effective countermeasures against that kind
of attack. Email spamming or flooding is a form of denial of service that can be deterred through filters and IDSs. Email security can be improved using S/MIME and PGP.
Fax and voice security can be improved by using encryption to protect the transmission of documents and prevent eavesdropping. Training users effectively is a useful countermeasure against social engineering attacks.
Virtual networks are software or digital re-creations of physical concepts in order to achieve security or performance improvements. Examples of virtual networks softwaredefined networks (SANs), VPNs, VLANs, virtual switches, virtual SANs, guest operating systems, port isolation, NAT, and more.
A VLAN is a hardware-imposed network segmentation created by switches. VLANs are used to logically segment a network without altering its physical topology. VLANs are used for traffic management.
NAT is used to hide the internal structure of a private network as well as to enable multiple internal clients to gain internet access through a few public IP addresses.
628 Chapter 12 ■ Secure Communications and Network Attacks
Third-party connectivity is a growing concern for businesses. Thus, it is important to consider the risks and ramifications. Any time an organizational network is connected directly to another entity’s network, their local threats and risks affect each other. A compromise of one organization can lead easily to the compromise of the other. Any connection between IT environments should be planned out in detail well in advance of actually interconnecting the cabling (whether physical or virtual). Often, this process starts with an MOU and ends with an ISA.
WAN links, or long-distance connection technologies, can be divided into two primary categories: dedicated and nondedicated lines. A dedicated line connects two specific endpoints and only those two endpoints. A nondedicated line is one that requires a connection to be established before data transmission can occur.
Communication systems are vulnerable to many attacks, including distributed denial-of- service (DDoS), eavesdropping, impersonation, replay, modification, spoofing, and ARP and DNS attacks. Fortunately, effective countermeasures exist for each of these.
Exam Essentials
Understand PPP. Point-to-Point Protocol (PPP) is an encapsulation protocol designed to support the transmission of IP traffic over dial-up or point-to-point links. The original PPP options for authentication were PAP, CHAP, and EAP.
Define PAP, CHAP, and EAP. PAP transmits usernames and passwords in cleartext. CHAP performs authentication using a challenge-response dialogue that cannot be replayed. EAP allows customized authentication security solutions.
Be able to provide examples of EAP. Over 40 EAP methods are defined, including LEAP, PEAP, EAP-SIM, EAP-FAST, EAP-MD5, EAP-POTP, EAP-TLS, and EAP-TTLS.
Understand IEEE 802.1X. IEEE 802.1X defines the use of encapsulated EAP to support a wide range of authentication options for LAN connections. The IEEE 802.1X standard is formally named “Port-Based Network Access Control.”
Know about port security. Port security can mean the physical control of all connection points, such as RJ-45 wall jacks or device ports. Port security is the management of TCP and User Datagram Protocol (UDP) ports. Port security can also refer to the need to
authenticate to a port before being allowed to communicate through or across the port (i.e., IEEE 802.1X).
Understand voice communications security. Voice communications are vulnerable to many attacks, especially as voice communications become an important part of network services. You can obtain confidentiality by using encrypted communications. Countermeasures must be deployed to protect against interception, eavesdropping, tapping, and other types of exploitation. Be familiar with voice communication topics, such as POTS, PSTN, PBX, and VoIP.
Know the threats associated with PBX systems and the countermeasures to PBX
fraud. Countermeasures to PBX fraud and abuse include many of the same precautions
Exam Essentials |
629 |
you would employ to protect a typical computer network: logical or technical controls, administrative controls, and physical controls.
Understand the security issues related to VoIP. VoIP is at risk for caller ID spoofing, vishing, call manager software/firmware attacks, phone hardware attacks, DoS, MitM/on-path attacks, spoofing, and switch hopping.
Recognize what phreaking is. Phreaking is a specific type of attack in which various types of technology are used to circumvent the telephone system to make free long-distance calls, to alter the function of telephone service, to steal specialized services, or to cause service disruptions. A phreaker is an attacker who performs phreaking.
Understand the issues of remote access security management. Remote access security management requires that security system designers address the hardware and software components of an implementation along with issues related to policy, work tasks, and encryption.
Know various issues related to remote access security. Be familiar with remote access, dial-up connections, screen scrapers, virtual applications/desktops, and general telecommuting security concerns.
Understand multimedia collaboration. Multimedia collaboration is the use of various multimedia-supporting communication solutions to enhance distance collaboration and communications.
Know the purpose of load balancers. The purpose of load balancing is to obtain more optimal infrastructure utilization, minimize response time, maximize throughput, reduce overloading, and eliminate bottlenecks. A load balancer is used to spread or distribute network traffic load across several network links or network devices.
Understand active/active. An active-active system is a form of load balancing that uses all available pathways or systems during normal operations. But has reduced capacity in adverse conditions.
Understand active/passive. An active-passive system is a form of load balancing that keeps some pathways or system in an unused dormant state during normal operations. And is able to maintain consistent capacity during abnormal conditions.
Understand how email security works. Internet email is based on SMTP, POP3, and IMAP. It is inherently insecure. It can be secured, but the methods used must be addressed in a security policy. Email security solutions include using S/MIME, PGP, DKIM, SPF, DMARC, STARTTLS, and Implicit SMTPS.
Know how to protect data communications. Protections should include implementations of secure VoIP, VPNs, VLANs, and NAT.
Understand virtualized networks. A virtualized network or network virtualization is the combination of hardware and software networking components into a single integrated entity. Examples include software-defined networks (SANs), VLANs, VPNs, virtual switches, virtual SANs, guest operating systems, port isolation, and NAT.