
- •Acknowledgments
- •About the Authors
- •About the Technical Editors
- •Contents at a Glance
- •Contents
- •Foreword
- •Introduction
- •Overview of the CISSP Exam
- •The Elements of This Study Guide
- •Study Guide Exam Objectives
- •Objective Map
- •Reader Support for This Book
- •Security 101
- •Confidentiality
- •Integrity
- •Availability
- •Protection Mechanisms
- •Security Boundaries
- •Third-Party Governance
- •Documentation Review
- •Manage the Security Function
- •Alignment of Security Function to Business Strategy, Goals, Mission, and Objectives
- •Organizational Processes
- •Organizational Roles and Responsibilities
- •Security Control Frameworks
- •Due Diligence and Due Care
- •Security Policy, Standards, Procedures, and Guidelines
- •Security Policies
- •Security Standards, Baselines, and Guidelines
- •Security Procedures
- •Threat Modeling
- •Identifying Threats
- •Determining and Diagramming Potential Attacks
- •Performing Reduction Analysis
- •Prioritization and Response
- •Supply Chain Risk Management
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Job Descriptions and Responsibilities
- •Candidate Screening and Hiring
- •Onboarding: Employment Agreements and Policies
- •Employee Oversight
- •Compliance Policy Requirements
- •Privacy Policy Requirements
- •Understand and Apply Risk Management Concepts
- •Risk Terminology and Concepts
- •Asset Valuation
- •Identify Threats and Vulnerabilities
- •Risk Assessment/Analysis
- •Risk Responses
- •Cost vs. Benefit of Security Controls
- •Countermeasure Selection and Implementation
- •Applicable Types of Controls
- •Security Control Assessment
- •Monitoring and Measurement
- •Risk Reporting and Documentation
- •Continuous Improvement
- •Risk Frameworks
- •Social Engineering
- •Social Engineering Principles
- •Eliciting Information
- •Prepending
- •Phishing
- •Spear Phishing
- •Whaling
- •Smishing
- •Vishing
- •Spam
- •Shoulder Surfing
- •Invoice Scams
- •Hoax
- •Impersonation and Masquerading
- •Tailgating and Piggybacking
- •Dumpster Diving
- •Identity Fraud
- •Typo Squatting
- •Influence Campaigns
- •Awareness
- •Training
- •Education
- •Improvements
- •Effectiveness Evaluation
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Planning for Business Continuity
- •Project Scope and Planning
- •Organizational Review
- •BCP Team Selection
- •Resource Requirements
- •Legal and Regulatory Requirements
- •Business Impact Analysis
- •Identifying Priorities
- •Risk Identification
- •Likelihood Assessment
- •Impact Analysis
- •Resource Prioritization
- •Continuity Planning
- •Strategy Development
- •Provisions and Processes
- •Plan Approval and Implementation
- •Plan Approval
- •Plan Implementation
- •Training and Education
- •BCP Documentation
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Categories of Laws
- •Criminal Law
- •Civil Law
- •Administrative Law
- •Laws
- •Computer Crime
- •Intellectual Property (IP)
- •Licensing
- •Import/Export
- •Privacy
- •State Privacy Laws
- •Compliance
- •Contracting and Procurement
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Defining Sensitive Data
- •Defining Data Classifications
- •Defining Asset Classifications
- •Understanding Data States
- •Determining Compliance Requirements
- •Determining Data Security Controls
- •Data Maintenance
- •Data Loss Prevention
- •Marking Sensitive Data and Assets
- •Handling Sensitive Information and Assets
- •Data Collection Limitation
- •Data Location
- •Storing Sensitive Data
- •Data Destruction
- •Ensuring Appropriate Data and Asset Retention
- •Data Protection Methods
- •Digital Rights Management
- •Cloud Access Security Broker
- •Pseudonymization
- •Tokenization
- •Anonymization
- •Understanding Data Roles
- •Data Owners
- •Asset Owners
- •Business/Mission Owners
- •Data Processors and Data Controllers
- •Data Custodians
- •Administrators
- •Users and Subjects
- •Using Security Baselines
- •Comparing Tailoring and Scoping
- •Standards Selection
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Cryptographic Foundations
- •Goals of Cryptography
- •Cryptography Concepts
- •Cryptographic Mathematics
- •Ciphers
- •Modern Cryptography
- •Cryptographic Keys
- •Symmetric Key Algorithms
- •Asymmetric Key Algorithms
- •Hashing Algorithms
- •Symmetric Cryptography
- •Cryptographic Modes of Operation
- •Data Encryption Standard
- •Triple DES
- •International Data Encryption Algorithm
- •Blowfish
- •Skipjack
- •Rivest Ciphers
- •Advanced Encryption Standard
- •CAST
- •Comparison of Symmetric Encryption Algorithms
- •Symmetric Key Management
- •Cryptographic Lifecycle
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Asymmetric Cryptography
- •Public and Private Keys
- •ElGamal
- •Elliptic Curve
- •Diffie–Hellman Key Exchange
- •Quantum Cryptography
- •Hash Functions
- •RIPEMD
- •Comparison of Hash Algorithm Value Lengths
- •Digital Signatures
- •HMAC
- •Digital Signature Standard
- •Public Key Infrastructure
- •Certificates
- •Certificate Authorities
- •Certificate Lifecycle
- •Certificate Formats
- •Asymmetric Key Management
- •Hybrid Cryptography
- •Applied Cryptography
- •Portable Devices
- •Web Applications
- •Steganography and Watermarking
- •Networking
- •Emerging Applications
- •Cryptographic Attacks
- •Salting Saves Passwords
- •Ultra vs. Enigma
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Secure Design Principles
- •Objects and Subjects
- •Closed and Open Systems
- •Secure Defaults
- •Fail Securely
- •Keep It Simple
- •Zero Trust
- •Privacy by Design
- •Trust but Verify
- •Techniques for Ensuring CIA
- •Confinement
- •Bounds
- •Isolation
- •Access Controls
- •Trust and Assurance
- •Trusted Computing Base
- •State Machine Model
- •Information Flow Model
- •Noninterference Model
- •Take-Grant Model
- •Access Control Matrix
- •Bell–LaPadula Model
- •Biba Model
- •Clark–Wilson Model
- •Brewer and Nash Model
- •Goguen–Meseguer Model
- •Sutherland Model
- •Graham–Denning Model
- •Harrison–Ruzzo–Ullman Model
- •Select Controls Based on Systems Security Requirements
- •Common Criteria
- •Authorization to Operate
- •Understand Security Capabilities of Information Systems
- •Memory Protection
- •Virtualization
- •Trusted Platform Module
- •Interfaces
- •Fault Tolerance
- •Encryption/Decryption
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Shared Responsibility
- •Hardware
- •Firmware
- •Client-Based Systems
- •Mobile Code
- •Local Caches
- •Server-Based Systems
- •Large-Scale Parallel Data Systems
- •Grid Computing
- •Peer to Peer
- •Industrial Control Systems
- •Distributed Systems
- •Internet of Things
- •Edge and Fog Computing
- •Static Systems
- •Network-Enabled Devices
- •Cyber-Physical Systems
- •Elements Related to Embedded and Static Systems
- •Security Concerns of Embedded and Static Systems
- •Specialized Devices
- •Microservices
- •Infrastructure as Code
- •Virtualized Systems
- •Virtual Software
- •Virtualized Networking
- •Software-Defined Everything
- •Virtualization Security Management
- •Containerization
- •Serverless Architecture
- •Mobile Devices
- •Mobile Device Security Features
- •Mobile Device Deployment Policies
- •Process Isolation
- •Hardware Segmentation
- •System Security Policy
- •Covert Channels
- •Attacks Based on Design or Coding Flaws
- •Rootkits
- •Incremental Attacks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Apply Security Principles to Site and Facility Design
- •Secure Facility Plan
- •Site Selection
- •Facility Design
- •Equipment Failure
- •Wiring Closets
- •Server Rooms/Data Centers
- •Intrusion Detection Systems
- •Cameras
- •Access Abuses
- •Media Storage Facilities
- •Evidence Storage
- •Restricted and Work Area Security
- •Utility Considerations
- •Fire Prevention, Detection, and Suppression
- •Perimeter Security Controls
- •Internal Security Controls
- •Key Performance Indicators of Physical Security
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •OSI Model
- •History of the OSI Model
- •OSI Functionality
- •Encapsulation/Deencapsulation
- •OSI Layers
- •TCP/IP Model
- •Common Application Layer Protocols
- •SNMPv3
- •Transport Layer Protocols
- •Domain Name System
- •DNS Poisoning
- •Domain Hijacking
- •Internet Protocol (IP) Networking
- •IP Classes
- •ICMP
- •IGMP
- •ARP Concerns
- •Secure Communication Protocols
- •Implications of Multilayer Protocols
- •Converged Protocols
- •Voice over Internet Protocol (VoIP)
- •Software-Defined Networking
- •Microsegmentation
- •Wireless Networks
- •Securing the SSID
- •Wireless Channels
- •Conducting a Site Survey
- •Wireless Security
- •Wi-Fi Protected Setup (WPS)
- •Wireless MAC Filter
- •Wireless Antenna Management
- •Using Captive Portals
- •General Wi-Fi Security Procedure
- •Wireless Communications
- •Wireless Attacks
- •Other Communication Protocols
- •Cellular Networks
- •Content Distribution Networks (CDNs)
- •Secure Network Components
- •Secure Operation of Hardware
- •Common Network Equipment
- •Network Access Control
- •Firewalls
- •Endpoint Security
- •Transmission Media
- •Network Topologies
- •Ethernet
- •Sub-Technologies
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Protocol Security Mechanisms
- •Authentication Protocols
- •Port Security
- •Quality of Service (QoS)
- •Secure Voice Communications
- •Voice over Internet Protocol (VoIP)
- •Vishing and Phreaking
- •PBX Fraud and Abuse
- •Remote Access Security Management
- •Remote Connection Security
- •Plan a Remote Access Security Policy
- •Multimedia Collaboration
- •Remote Meeting
- •Instant Messaging and Chat
- •Load Balancing
- •Virtual IPs and Load Persistence
- •Active-Active vs. Active-Passive
- •Manage Email Security
- •Email Security Goals
- •Understand Email Security Issues
- •Email Security Solutions
- •Virtual Private Network
- •Tunneling
- •How VPNs Work
- •Always-On
- •Common VPN Protocols
- •Switching and Virtual LANs
- •Switch Eavesdropping
- •Private IP Addresses
- •Stateful NAT
- •Automatic Private IP Addressing
- •Third-Party Connectivity
- •Circuit Switching
- •Packet Switching
- •Virtual Circuits
- •Fiber-Optic Links
- •Security Control Characteristics
- •Transparency
- •Transmission Management Mechanisms
- •Prevent or Mitigate Network Attacks
- •Eavesdropping
- •Modification Attacks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Controlling Access to Assets
- •Controlling Physical and Logical Access
- •The CIA Triad and Access Controls
- •Managing Identification and Authentication
- •Comparing Subjects and Objects
- •Registration, Proofing, and Establishment of Identity
- •Authorization and Accountability
- •Authentication Factors Overview
- •Something You Know
- •Something You Have
- •Something You Are
- •Multifactor Authentication (MFA)
- •Two-Factor Authentication with Authenticator Apps
- •Passwordless Authentication
- •Device Authentication
- •Service Authentication
- •Mutual Authentication
- •Implementing Identity Management
- •Single Sign-On
- •SSO and Federated Identities
- •Credential Management Systems
- •Credential Manager Apps
- •Scripted Access
- •Session Management
- •Provisioning and Onboarding
- •Deprovisioning and Offboarding
- •Defining New Roles
- •Account Maintenance
- •Account Access Review
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Comparing Access Control Models
- •Comparing Permissions, Rights, and Privileges
- •Understanding Authorization Mechanisms
- •Defining Requirements with a Security Policy
- •Introducing Access Control Models
- •Discretionary Access Control
- •Nondiscretionary Access Control
- •Implementing Authentication Systems
- •Implementing SSO on the Internet
- •Implementing SSO on Internal Networks
- •Understanding Access Control Attacks
- •Crackers, Hackers, and Attackers
- •Risk Elements
- •Common Access Control Attacks
- •Core Protection Methods
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Security Testing
- •Security Assessments
- •Security Audits
- •Performing Vulnerability Assessments
- •Describing Vulnerabilities
- •Vulnerability Scans
- •Penetration Testing
- •Compliance Checks
- •Code Review and Testing
- •Interface Testing
- •Misuse Case Testing
- •Test Coverage Analysis
- •Website Monitoring
- •Implementing Security Management Processes
- •Log Reviews
- •Account Management
- •Disaster Recovery and Business Continuity
- •Training and Awareness
- •Key Performance and Risk Indicators
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Need to Know and Least Privilege
- •Separation of Duties (SoD) and Responsibilities
- •Two-Person Control
- •Job Rotation
- •Mandatory Vacations
- •Privileged Account Management
- •Service Level Agreements (SLAs)
- •Addressing Personnel Safety and Security
- •Duress
- •Travel
- •Emergency Management
- •Security Training and Awareness
- •Provision Resources Securely
- •Information and Asset Ownership
- •Asset Management
- •Apply Resource Protection
- •Media Management
- •Media Protection Techniques
- •Managed Services in the Cloud
- •Shared Responsibility with Cloud Service Models
- •Scalability and Elasticity
- •Provisioning
- •Baselining
- •Using Images for Baselining
- •Automation
- •Managing Change
- •Change Management
- •Versioning
- •Configuration Documentation
- •Managing Patches and Reducing Vulnerabilities
- •Systems to Manage
- •Patch Management
- •Vulnerability Management
- •Vulnerability Scans
- •Common Vulnerabilities and Exposures
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Conducting Incident Management
- •Defining an Incident
- •Incident Management Steps
- •Basic Preventive Measures
- •Understanding Attacks
- •Intrusion Detection and Prevention Systems
- •Specific Preventive Measures
- •Logging and Monitoring
- •The Role of Monitoring
- •Log Management
- •Egress Monitoring
- •Automating Incident Response
- •Understanding SOAR
- •Threat Intelligence
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •The Nature of Disaster
- •Natural Disasters
- •Human-Made Disasters
- •Protecting Hard Drives
- •Protecting Servers
- •Protecting Power Sources
- •Trusted Recovery
- •Quality of Service
- •Recovery Strategy
- •Business Unit and Functional Priorities
- •Crisis Management
- •Emergency Communications
- •Workgroup Recovery
- •Alternate Processing Sites
- •Database Recovery
- •Recovery Plan Development
- •Emergency Response
- •Personnel and Communications
- •Assessment
- •Backups and Off-site Storage
- •Software Escrow Arrangements
- •Utilities
- •Logistics and Supplies
- •Recovery vs. Restoration
- •Testing and Maintenance
- •Structured Walk-Through
- •Simulation Test
- •Parallel Test
- •Lessons Learned
- •Maintenance
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Investigations
- •Investigation Types
- •Evidence
- •Investigation Process
- •Major Categories of Computer Crime
- •Military and Intelligence Attacks
- •Business Attacks
- •Financial Attacks
- •Terrorist Attacks
- •Grudge Attacks
- •Thrill Attacks
- •Hacktivists
- •Ethics
- •Organizational Code of Ethics
- •(ISC)2 Code of Ethics
- •Ethics and the Internet
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Software Development
- •Systems Development Lifecycle
- •Lifecycle Models
- •Gantt Charts and PERT
- •Change and Configuration Management
- •The DevOps Approach
- •Application Programming Interfaces
- •Software Testing
- •Code Repositories
- •Service-Level Agreements
- •Third-Party Software Acquisition
- •Establishing Databases and Data Warehousing
- •Database Management System Architecture
- •Database Transactions
- •Security for Multilevel Databases
- •Open Database Connectivity
- •NoSQL
- •Expert Systems
- •Machine Learning
- •Neural Networks
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Malware
- •Sources of Malicious Code
- •Viruses
- •Logic Bombs
- •Trojan Horses
- •Worms
- •Spyware and Adware
- •Ransomware
- •Malicious Scripts
- •Zero-Day Attacks
- •Malware Prevention
- •Platforms Vulnerable to Malware
- •Antimalware Software
- •Integrity Monitoring
- •Advanced Threat Protection
- •Application Attacks
- •Buffer Overflows
- •Time of Check to Time of Use
- •Backdoors
- •Privilege Escalation and Rootkits
- •Injection Vulnerabilities
- •SQL Injection Attacks
- •Code Injection Attacks
- •Command Injection Attacks
- •Exploiting Authorization Vulnerabilities
- •Insecure Direct Object References
- •Directory Traversal
- •File Inclusion
- •Request Forgery
- •Session Hijacking
- •Application Security Controls
- •Input Validation
- •Web Application Firewalls
- •Database Security
- •Code Security
- •Secure Coding Practices
- •Source Code Comments
- •Error Handling
- •Hard-Coded Credentials
- •Memory Management
- •Summary
- •Exam Essentials
- •Written Lab
- •Review Questions
- •Chapter 2: Personnel Security and Risk Management Concepts
- •Chapter 3: Business Continuity Planning
- •Chapter 4: Laws, Regulations, and Compliance
- •Chapter 5: Protecting Security of Assets
- •Chapter 10: Physical Security Requirements
- •Chapter 11: Secure Network Architecture and Components
- •Chapter 12: Secure Communications and Network Attacks
- •Chapter 17: Preventing and Responding to Incidents
- •Chapter 18: Disaster Recovery Planning
- •Chapter 19: Investigations and Ethics
- •Chapter 20: Software Development Security
- •Chapter 21: Malicious Code and Application Attacks
- •Chapter 3: Business Continuity Planning
- •Chapter 5: Protecting Security of Assets
- •Chapter 6: Cryptography and Symmetric Key Algorithms
- •Chapter 12: Secure Communications and Network Attacks
- •Chapter 15: Security Assessment and Testing
- •Chapter 17: Preventing and Responding to Incidents
- •Chapter 18: Disaster Recovery Planning
- •Chapter 19: Investigations and Ethics
- •Chapter 21: Malicious Code and Application Attacks
- •Index

Communications security is designed to detect, prevent, and even correct data transportation errors (that is, it provides integrity protection as well as confidentiality). Communications
security is used to sustain the security of networks while supporting the need to exchange and share data. This chapter covers the many forms of communications security, vulnerabilities, and countermeasures.
The Communication and Network Security domain for the CISSP certification exam deals with topics related to network components (i.e., network devices and protocols), specifically how they function and how they are relevant to security. This domain is discussed in this chapter and in Chapter 11, “Secure Network Architecture and Components.” Be sure to read and study the material in both chapters to ensure complete coverage of the essential material for the CISSP certification exam.
Protocol Security Mechanisms
Transmission Control Protocol/Internet Protocol (TCP/IP) is the primary protocol suite used on most networks and on the internet. It is a robust protocol suite, but it has numerous security deficiencies. In an effort to improve the security of TCP/IP, many subprotocols, mechanisms, or applications have been developed to protect the confidentiality, integrity, and availability of transmitted data. It is important to remember that even with the foundational protocol suite of TCP/IP, there are literally hundreds, if not thousands, of individual protocols, mechanisms, and applications in use across the internet. Some of them are designed to provide security services. Some protect integrity, others protect confidentiality, and others provide authentication and access control. In the next sections, we’ll discuss some common network and protocol security mechanisms.
Authentication Protocols
The Point-to-Point Protocol (PPP) is an encapsulation protocol designed to support the transmission of IP traffic over dial-up or point-to-point links. PPP is a Data Link layer protocol that allows for multivendor interoperability of WAN devices supporting serial links. Although it is rarely found on typical Ethernet networks today, it is the foundation on which many modern communications are based, as well as the foundation of communication authentication. PPP includes a wide range of communication services, such as the assignment and management of IP addresses, management of synchronous communications,

Protocol Security Mechanisms |
583 |
standardized encapsulation, multiplexing, link configuration, link quality testing, error detection, and feature or option negotiation (such as compression).
PPP is an internet standard documented in RFC 1661. It replaced the Serial Line Internet Protocol (SLIP). SLIP offered no authentication, supported only half-duplex communications, had no error-detection capabilities, and required manual link establishment and teardown. PPP supports automatic connection configuration, error detection, full-duplex communications, and options for authentication. The original PPP options for authentication were PAP, CHAP, and EAP.
Password Authentication Protocol (PAP) PAP transmits usernames and passwords in cleartext. It offers no form of encryption; it simply provides a means to transport the logon credentials from the client to the authentication server.
Challenge Handshake Authentication Protocol (CHAP) CHAP performs authentication using a challenge-response dialogue that cannot be replayed. The challenge is a random number issued by the server, which the client uses along with the password hash to compute the one-way function derived response. CHAP also periodically reauthenticates the remote system throughout an established communication session to verify a persistent identity of the remote client. This activity is transparent to the user. However, since CHAP is based on MD5, it is no longer considered secure. A Microsoft customization named MS-CHAPv2 uses updated algorithms and is preferred over the original CHAP.
Extensible Authentication Protocol (EAP) This is a framework for authentication instead of an actual protocol. EAP allows customized authentication security solutions, such as supporting smartcards, tokens, and biometrics. EAP was originally designed for use over physically isolated channels and thus assumed secured pathways. Some EAP methods use encryption, but others do not. Over 40 EAP methods are defined, including LEAP, PEAP, EAP-SIM, EAP-FAST, EAP-MD5, EAP-POTP, EAP-TLS, and EAP-TTLS.
EAP Derivatives
Lightweight Extensible Authentication Protocol (LEAP) is a Cisco proprietary alternative toTKIP for WPA. It was developed to address deficiencies inTKIP before 802.11i/ WPA2 was ratified as a standard. LEAP is now a legacy solution to be avoided.
Protected Extensible Authentication Protocol (PEAP) encapsulates EAP in aTLS tunnel. PEAP is preferred to EAP because PEAP imposes its own security. PEAP supports mutual authentication.
Subscriber Identity Module (EAP-SIM) is a means of authenticating mobile devices over the Global System for Mobile Communications (GSM) network. Each device/subscriber is issued a subscriber identity module (SIM) card, which is associated with the subscriber’s account and service level.

584 Chapter 12 ■ Secure Communications and Network Attacks
Flexible Authentication via Secure Tunneling (EAP-FAST) is a Cisco protocol proposed to replace LEAP, which is now obsolete, thanks to the development of WPA2.
EAP-MD5 was one of the earliest EAP methods. It hashes passwords using MD5. It is now deprecated.
EAP Protected One-Time Password (EAP-POTP) supports the use of OTP tokens (which includes hardware devices and software solutions) in multifactor authentication for use in both one-way and mutual authentication.
EAP Transport Layer Security (EAP-TLS) is an open IETF standard that is an implementation of theTLS protocol for use in protecting authentication traffic. EAP-TLS is most effective when both client and server have a digital certificate (i.e., mutual certificate authentication).
EAP Tunneled Transport Layer Security (EAP-TTLS) is an extension of EAP-TLS that creates a VPN-like tunnel between endpoints prior to authentication.This ensures that even the client’s username is never transmitted in cleartext.
For a more extensive list of EAP methods, see en.wikipedia.org/wiki/Extensible_
Authentication_Protocol.
IEEE 802.1X defines the use of encapsulated EAP to support a wide range of authentication options for LAN connections. The IEEE 802.1X standard is formally named “PortBased Network Access Control,” where port refers to any network link, not just physical RJ-45 jacks. This technology ensures that clients can’t communicate with a resource until proper authentication has taken place. It’s based on Extensible Authentication Protocol (EAP) from PPP.
Many people encounter 802.1X in relation to wireless networking, where it serves as the basis for wireless enterprise authentication. In that implementation, 802.1X serves as an authentication proxy by forwarding wireless client authentication requests to a dedicated remote authentication server or AAA server (typically RADIUS or TACACS+; see Chapter 14, “Controlling and Monitoring Access”).
Thus, it is important to remember that 802.1X isn’t a wireless technology (i.e., IEEE 802.11)—it is an authentication technology that can be used anywhere authentication is needed, including WAPs, firewalls, routers, switches, proxies, VPN gateways, and remote access servers (RASs)/network access servers (NASs).
When 802.1X is in use, it makes a port-based decision about whether to allow or deny a connection based on the authentication of a user or service.
Like many technologies, 802.1X may be vulnerable to man-in-the-middle (MiTM) (aka on-path) and hijacking attacks because the authentication mechanism occurs only when the connection is established. Not all 802.1X or EAP authentication methods are secure; some only check for superficial IDs, such as a MAC address, before granting access. This issue can be addressed by using periodic mid-session reauthentication, as well as implementing session encryption in addition to any authentication protections provided by 802.1X/EAP.
Protocol Security Mechanisms |
585 |
For a discussion of 802.1X, LEAP, and PEAP in relation to wireless networking, see Chapter 11, “Secure Network Architecture and Components.”
Port Security
Port security in IT can mean several things. It can mean the physical control of all connection points, such as RJ-45 wall jacks or device ports (such as those on a switch, router, or patch panel) so that no unauthorized users or devices can attempt to connect to an open port. This control can be accomplished by locking down the wiring closet and server vaults and then disconnecting the workstation run from the patch panel (or punch-down block) that leads to a room’s wall jack. Any unneeded or unused wall jacks can (and should) be physically disabled in this manner. Another option is to use a smart patch panel that can monitor the MAC address of any device connected to each wall port across a building and detect not just when a new device is connected to an empty port, but also when a valid device is disconnected or replaced by an invalid device.
Another meaning for port security is the management of TCP and User Datagram Protocol (UDP) ports. If a service is active and assigned to a port, then that port is open. All the other 65,535 ports (TCP or UDP) are closed if a service isn’t actively using them. Hackers can detect the presence of active services by performing a port scan. Firewalls, IDSs, IPSs, and other security tools can detect this activity and either block it or send back false/misleading information. This measure is a type of port security that makes port scanning less effective.
Port security can also refer to the need to authenticate to a port before being allowed to communicate through or across the port. This may be implemented on a switch, router, smart patch panel, or even a wireless network. This concept is often referred to as IEEE 802.1X. For the full discussion of network access control (NAC), see Chapter 11.
Quality of Service (QoS)
Quality of service (QoS) is the oversight and management of the efficiency and performance of network communications. Items to measure include throughput rate, bit rate, packet loss, latency, jitter, transmission delay, and availability. Based on the recorded/detected metrics in these areas, network traffic can be adjusted, throttled, or reshaped to account for unwanted conditions. High-priority traffic or time-sensitive traffic (such as VoIP) can be prioritized, and other traffic can be held back as needed. Throttling or shaping can be implemented
on a protocol or IP basis to set a maximum use or consumption limit. In some cases, using alternate transmission paths, time-shifting noncritical data transfers, or deploying more or higher-capacity connections may be necessary to maintain a desired QoS.
Most network administrators don’t automatically consider QoS an aspect of security. However, availability is one of the elements of the CIA Triad. By monitoring and managing QoS, essential communications and their related business operations, processes, and tasks may have their availability sustained and protected.