Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
КР1 2020 Подгорнов.docx
Скачиваний:
0
Добавлен:
16.06.2025
Размер:
607.24 Кб
Скачать

35. Взрывные методы перфорации.

К взрывным методам относятся пулевая, торпедная и кумулятивная перфорация.

Пулевая перфорация осуществляется так называемым пулевым перфоратором, в котором имеются каморы с взрывчатым веществом, детонатором и пулей диаметром 12,5 мм. В результате практически мгновенного сгорания заряда давление на пулю достигает 2000 МПа; под действием этого давления пуля пробивает обсадную колонну, цементный камень и может внедряться в породу, образуя перфорационный канал длиной до 150 мм, диаметр которого равен 12 мм. Существуют пулевые перфораторы с горизонтальными и вертикальными стволами.

Торпедная перфорация осуществляется разрывными снарядами диаметром 32 или 22 мм. При попадании снаряда в горную породу после выстрела происходит взрыв внутреннего заряда снаряда и дополнительное воздействие на горную породу в виде образования системы трещин. Длина перфорационных каналов при торпедной перфорации достигает 160 мм. Торпедная перфорация осуществляется аппаратами с горизонтальными стволами.

Кумулятивная (беспулевая) перфорация осуществляется за счет фокусирования продуктов взрыва заряда специальной формы, как правило, конической. Заряд конической формы облицован тонким медным листовым покрытием. При подрыве заряда медная облицовка заряда расплавляется, смешивается с газами и в виде газометаллической фокусированной струи прорезает канал в колонне, цементном камне и горной породе. Давление в струе достигает 0,3•106 МПа, а скорость ее - 8 км/с. При этом образуется перфорационный канал длиной до 350 мм и диаметром до 14 мм. Кумулятивные перфораторы делятся на корпусные и бескорпусные (ленточные), но снаряды в них располагаются всегда горизонтально. В настоящее время кумулятивная перфорация является наиболее распространенной, т.к. позволяет в широком диапазоне регулировать характеристики зарядов, подбирая наилучшие для каждого конкретного продуктивного горизонта.

36. Что определяет значение скин-фактора перфорации?

Скин-фактор S характеризует потери давления в пласте,

вызванные искривлением линий тока, нарушением закона Дарси,

нарушениями естественного состояния призабойной зоны пласта в

результате вскрытия и перфорации, по сравнению с фильтрацией в

однородном пласте к гидродинамически совершенной вертикальной

скважине.

Скин-фактор за счет перфорации Вследствие воздействия кумулятивной струи на породу, вокруг перфорационного канала образуется уплотненная зона уменьшенной проницаемости. Sp – скин-фактор, учитывающий геометрию перфорации (+)

https://present5.com/skin-faktor-ooo-gazpromneft-ntc-23-27-11-2015/

37. Методы гидроструйной перфорации.

Данная методика применяется не столь часто, как кумулятивная, однако может быть использована в силу определенных обстоятельств на нефтяной скважине. Гидропескоструйная перфорация – это абразивное воздействие на преграды, их гидромониторное разрушение. Представляет собой процесс нагнетания в скважину жидкости и песка, после чего образуются чистые глубокие каналы.

Перфорация нефтяных скважин по данной технологии используется при вскрытии сжатых коллекторов. Они могут быть, как гомогенными по проницаемости, так и не являться такими. Способ применяется или для срезания трубы на буровой, когда требуется провести ремонт или замену оснащения.

Гидропескоструйная перфорация бывает двух типов:

  1. Точечная. В таком случае канал делается при помощи неподвижного перфоратора. Воздействие на нефтяную скважину данным способом проводится в течение 15 минут.

  2. Щелевая. Предполагает использование подвижного перфоратора. Предполагает воздействие в течение 3 минут на каждый см длины.

Технология перфорации стала применяться в отрасли после внедрения в нее стойких материалов, предназначенных для проведения технологических процессов в углеводородных скважинах. В сравнении с классическими методиками, гидропескоструйное воздействие имеет достаточно большой список достоинств:

  1. Повышенная успешность работ. Это продиктовано отсутствием преждевременной остановки закачки абразивной смеси, когда предполагается повторное проведение работ.

  2. Уменьшение сроков освоения скважины. На разработку тратится меньше времени в силу того, что полностью отсутствуют работы с уплотнителем (пакером) и пределы по массе проппанта.

  3. Исключение негативного воздействия на нефтеносный пласт. Взрывные нагрузки не производят положительного эффекта на эксплуатационную колонну. А получение отверстий путем нагнетания абразивного песка с жидкостью несет более щадящий характер. При этом получаемые отверстия после обработки нефтяной скважина имеют больший диаметр.

  4. Более результативное проведение нескольких последовательных операций. Когда требуется определенное количество процессов перфорации, гидропескоструйная технология предполагает меньшую массу проппанта. Это связано с занным размещением.

  5. Технологический процесс ISOJET допускается а различных скважинах. Различные препятствия (кривизна канала, присутствие хвостовика) не могут повлиять на возможное применение способа. При этом для сооружений, относящихся по прочности к классу Е (предполагается отсутствие усиленной колонны), гидропескоструйная перфорация также может применяться.

Но существуют и негативные стороны использования технологии. Здесь стоит отметить следующее:

  1. Необходимость использования передового оснащения. Для гидропескоструйной обработки нефтяных скважин используются специальные перфораторы, компрессоры, пескосмесители. Также необходимо соорудить резервуары для жидкости.

  2. Поглощение жидкости грунтом. В таком случае применение гидропескоструйной технологии перфорации полностью исключается.

  3. Полное соблюдение технологи процесса. Здесь стоит наладить расход форсунок, давление при работе с учетом потерь по длине трубок, контролировать продолжительность процесса. Если этого не соблюдать, то могут возникнуть необратимые последствия.