- •1. Определение ОС. Назначение и функции операционной системы. Место ОС в структуре вычислительной системы.
- •2. Области применения ОС: ОС мейнфреймов, серверные ОС, ОС многопроцессорных систем, персональных компьютеров, смартфонов и планшетов, встроенные ОС, ОС сенсорных узлов, смарт-карт, ОС для IoT устройств.
- •3. Понятие ресурса. Основные ресурсы вычислительной системы. Управление ресурсами.
- •4. Критерии эффективности и классы ОС.
- •5. Функциональные компоненты ОС персонального компьютера.
- •6. Понятие интерфейса прикладного программирования
- •7. Пользовательский интерфейс.
- •8. Системные вызовы.
- •9. Прерывания (понятие, классификация, обработка прерываний).
- •10. Обработка аппаратных прерываний.
- •11. Требования, предъявляемые к современным ОС.
- •12. Виртуализация. Гипервизор 1 и 2 типа. Контейнеры.
- •13. Классификации ОС
- •14. Архитектура ОС. Ядро и вспомогательные модули.
- •15. Классическая архитектура ОС. Монолитные и многослойные ОС.
- •16. Микроядерная архитектура ОС.
- •17. Процессы и потоки. Состояния потока.
- •18. Функции ОС по управлению процессами.
- •19. Планирование и диспетчеризация потоков, моменты перепланировки.
- •20. Кооперативная и вытесняющая многозадачность, достоинства и недостатки.
- •21. Алгоритм планирования, основанный на квантовании
- •22. Приоритетное планирование.
- •23. Алгоритмы планирования в ОС пакетной обработки: «первым пришел – первым обслужен», «кратчайшая задача – первая», «наименьшее оставшееся время выполнения».
- •24. Алгоритмы планирования в интерактивных ОС: циклическое, приоритетное, MLFQ.
- •25. Равномерные планировщики: гарантированное, лотерейное, справедливое планирование.
- •26. Планирование в многопроцессорных системах.
- •27. Планирование в системах реального времени.
- •28. Алгоритм планирования Windows NT.
- •29. Алгоритмы планирования Linux: О(1)
- •30. Алгоритмы планирования Linux: CFS
- •31. Планирование в ОС реального времени.
- •32. Межпроцессное взаимодействие (почему необходимы системные средства и в каких ситуациях применяются, примеры таких средств).
- •33. Синхронизация процессов и потоков: цели и средства синхронизации
- •34. Ситуация состязаний (гонки). Способы предотвращения.
- •35. Способы реализации взаимных исключений: блокирующие переменные, критические секции, семафоры.
- •36. Классические задачи синхронизации: «производители-потребители», «проблема обедающих философов», «проблема спящего брадобрея».
- •37. Взаимные блокировки. Условия, необходимые для возникновения тупика
- •38. Обнаружение взаимоблокировки при наличии одного ресурса каждого типа.
- •39. Обнаружение взаимоблокировки при наличии нескольких экземпляров ресурса каждого типа.
- •40. Предотвращение взаимоблокировки. Алгоритм банкира для одного вида ресурсов.
- •41. Предотвращение взаимоблокировки. Алгоритм банкира для нескольких видов ресурсов.
- •42. Синхронизирующие объекты ОС: системные семафоры, мьютексы, события, сигналы, барьеры, ждущие таймеры.
- •43. Организация обмена данными между процессами (каналы, разделяемая память, почтовые ящики, сокеты).
- •44. Функции ОС по управлению памятью.
- •45. Алгоритмы распределения памяти без использования внешних носителей (одиночное непрерывное распределение, фиксированные, динамические, перемещаемые разделы).
- •46. Понятие виртуальной памяти.
- •47. Страничное распределение памяти.
- •48. Таблицы страниц для больших объемов памяти.
- •49. Алгоритмы замещения страниц.
- •50. Сегментное распределение памяти.
- •51. Сегментно-страничное распределение памяти.
- •52. Кеш-память (понятие, принцип действия кеш-памяти).
- •53. Случайное отображение основной памяти на кеш.
- •54. Детерминированное отображение основной памяти на кеш.
- •55. Комбинированный способ отображения основной памяти на кеш.
- •56. Задачи ОС по управлению файлами и устройствами.
- •57. Многослойная модель подсистемы ввода-вывода.
- •58. Физическая организация диска. HDD, SSD устройства.
- •59. Файловая система. Определение, состав, типы файлов. Логическая организация файловой системы.
- •60. Физическая организация и адресация файлов.
- •61. FAT. Структура тома. Формат записи каталога. FAT12, FAT16, FAT32, exFAT.
- •62. ext2, ext3, ext4: структура тома, адресация файлов, каталоги, индексные дескрипторы.
- •63. NTFS: структура тома, типы файлов, организация каталогов.
- •64. Файловые операции. Процедура открытия файла.
- •65. Организация контроля доступа к файлам.
- •66. Отказоустойчивость файловых систем.
- •67. Процедура самовосстановления NTFS.
- •68. Избыточные дисковые подсистемы RAID.
- •69. Многоуровневые драйверы.
- •70. Дисковый кеш. Ускорение выполнения дисковых операций: традиционный дисковый кеш, кеш на основе механизма виртуальной памяти.
46. Понятие виртуальной памяти.
На разных этапах жизненного цикла программы используются различные типы
адресов:
● символьные имена присваивает пользователь при написании на алгоритмическом языке или ассемблере;
● виртуальные адреса вырабатывает транслятор, переводящий программу на машинный язык. Поскольку во время трансляции в общем случае неизвестно, в какое место оперативной памяти будет загружена программа, то транслятор присваивает переменным и командам виртуальные адреса, считая, что начальным адресом будет нулевой адрес;
● физические адреса соответствуют номерам ячеек оперативной памяти, где в действительности расположены или будут расположены переменные и команды.
Совокупность виртуальных адресов называется виртуальным адресным пространством. Различают максимально возможное виртуальное адресное пространство (определяется архитектурой компьютера) и назначенное (выделенное) процессу виртуальное адресное пространство (фактически нужные процессу адреса, первоначально назначается транслятором, размер его может быть изменен во время выполнения).
Системная часть виртуальной памяти в ОС любого типа включает область,
подвергаемую страничному вытеснению, и область, на которую страничное вытеснение не распространяется.
Вневытесняемой области размещаются модули, требующие быстрой реакции
и/или постоянного присутствия в памяти, например диспетчер потоков. Остальные модули ОС подвергаются страничному вытеснению, как и пользовательские процессы.
Вразных ОС используются разные способы структуризации виртуального
адресного пространства. В одних ОС виртуальное адресное пространство процесса
представлено в виде непрерывной линейной последовательности виртуальных адресов. Такую структуру делится на адресного пространства называют плоской.
В других ОС виртуальное адресное пространство - части, называемые сегментами. В этом случае помимо линейного адреса может быть использован виртуальный адрес, представляющий собой пару чисел (m,n), где n определяет сегмент, а m – смещение внутри сегмента.
Задачей ОС является отображение индивидуальных адресных пространств всех одновременно выполняющихся процессов на общую физическую память.
В настоящее время типична ситуация, когда объем виртуального адресного
пространства превышает доступный объем оперативной памяти (максимальный
размер физической памяти, которую можно установить в компьютере определенной модели ограничивается разрядностью адресной шины).
Существует два подхода к преобразованию виртуальных адресов в
физические:
1)Пересчет виртуальных адресов в физические выполняется один раз для каждого процесса во время начальной загрузки программы в память. Эту операцию выполняет специальная системная программа – перемещающий
загрузчик.
2)Программа загружается в память с неизмененными виртуальными адресами.
Во время выполнения программы при каждом обращении к оперативной памяти выполняется преобразование виртуального адреса в физический. Это так называемое динамическое преобразование адресов.
Виртуализация оперативной памяти осуществляется совместно ОС и аппаратными средствами процессора и включает решение следующих задач:
● размещение данных в запоминающих устройствах разного типа, например часть кодов программы – в оперативной памяти, а часть – на диске;
● выбор образов процессов или их частей для перемещения из оперативной памяти на диск и обратно;
● перемещение по мере необходимости данных между памятью и диском;
● преобразование виртуальных адресов в физические.
Виртуализация памяти может быть осуществлена на основе двух различных подходов: ● свопинг (swapping) — образы процессов выгружаются на диск и возвращаются
в оперативную память целиком;
● виртуальная память (virtual memory) — между оперативной памятью и диском перемещаются части (сегменты, страницы и т. п.) образов процессов.
Ключевой проблемой виртуальной памяти, возникающей в результате многократного изменения местоположения в оперативной памяти образов процессов или их частей, является преобразование виртуальных адресов в физические.
Страничная виртуальная память организует перемещение данных между памятью и диском страницами — частями виртуального адресного пространства, фиксированного и сравнительно небольшого размера.
Сегментная виртуальная память предусматривает перемещение данных сегментами — частями виртуального адресного пространства произвольного размера, полученными с учетом смыслового значения данных.
Сегментно-страничная виртуальная память использует двухуровневое деление: виртуальное адресное пространство делится на сегменты, а затем сегменты делятся на страницы. Единицей перемещения данных здесь является страница. Этот
способ управления памятью объединяет в себе элементы обоих предыдущих подходов.
Для временного хранения сегментов и страниц на диске отводится либо специальная область, либо специальный файл, которые во многих ОС по традиции продолжают называть областью, или файлом свопинга, хотя перемещение информации между оперативной памятью и диском осуществляется уже не в форме полного замещения одного процесса другим, а частями. Другое популярное название этой области — страничный файл (page file, или paging file).
Текущий размер страничного файла является важным параметром, оказывающим влияние на возможности операционной системы: чем больше страничный файл, тем больше приложений может одновременно выполнять ОС (при фиксированном размере оперативной памяти). Однако необходимо понимать, что увеличение числа одновременно работающих приложений за счет увеличения размера страничного файла замедляет их работу. Его размер можно настраивать.
47. Страничное распределение памяти.
Виртуальное адресное пространство процесса делится на части одинакового,
фиксированного для данной системы размера, называемые виртуальными страницами. Вся оперативная память машины также делится на части такого же
размера, называемые физическими страницами. Размер страницы выбирается
кратным степени двойки. При загрузке процесса часть его виртуальных страниц помещается в оперативную память, а остальные - на диск. Для каждого процесса ОС
создает таблицу страниц – информационную структуру, содержащую записи обо всех
виртуальных страниц процесса.
Дескриптор страницы включает в себя следующую информацию:
● номер физической страницы, в которую загружена данная виртуальная страница;
● признак присутстВия; АППАРАТНО ● признак модификации; АППАРАТНО ● признак обращения. АППАРАТНО
Признаки присутствия, модификации и обращения в большинстве моделей современных процессоров устанавливаются аппаратно.
