
- •Вопрос 1. Приготовление мазков из бульонной культуры и с плотной питательной среды
- •4. Окраска препаратов проводится:
- •7 Взятие смывов на кишечную палочку с рук медперсонала и медицинского оборудования.
- •1. Механическим разобщением бактериальных клеток;
- •2. Действии физических и химических факторов, оказывающих избирательное действие;
1. Механическим разобщением бактериальных клеток;
2. Действии физических и химических факторов, оказывающих избирательное действие;
3. Способности некоторых бактерий размножаться в организме.
Метод Дригальского основан на механическом разобщение на поверхности плотной питательной среды микробов всех видов, входящих в состав исследуемого материала.
I этап.
1. Определение микробного состава исследуемого материала (приготовление мазка, окраска по Граму).
2. Посев в чашку Петри: одну каплю материала наносят на поверхность МПА и растирают шпателем. Не обжигая шпателя и не набирая нового материала, засевают вторую и третью чашки.
3. Засеянные чашки переворачивают вверх дном и инкубируют в термостате 18-20 часов при температуре 37° С.
II этап.
1. Микроскопическое изучение колонки по величине, форме, окраске, характеру поверхности, краев, консистенции колонии.
2. Микроскопическое изучение одной исследуемой колонии (приготовление мазка, окраска по Граму).
3. Оставшуюся часть колонии пересевают в пробирку со скошенным агаром.
4. Пробирку инкубируют в термостате 18-20 часов при температуре 37° С.
III этап.
Проверка культуры на чистоту (макроскопическим — однородный рост, микроскопическим- однородные по морфологическим признакам и тинкториальным признакам клетки). Идентификация проводится по:
- ферментативным свойствам.
- антигенным свойствам фагочувствительности, токсигенности и другим признакам.
№ 12 Применение дез. средств для проведения текущей дезинфекции.
Дезинфекция – обеззараживание объектов окружающей среды. В отличие от стерилизации дезинфекция приводит к гибели большинства, но не всех форм микробов. Т.е. Д. обеспечивает только снижение микробной контаминации, а не полное обеззараживание объекта.
Химические методы.
Это обработка объекта дезинфектантами – микробицидными хим.веществами. Некоторые из этих соединений могут оказывать токсическое действие на организм, поэтому их применяют исключительно для обработки внешних объектов. В качестве дезинфектантов обычно используют:
- перекись водорода,
- хлоросодержащие соединения (0,1 – 10% раствор хлорной извести, 0,5 0 5% раствор хлорамина, 0,1 – 10% раствор двутретьеосновной соли гипохлората кальция – ДТСГК),
- формальдегид, фенолы (3 – 5% раствор фенола, лизола или карболовой кислоты),
- йодофоры.
Выбор дез.вещества и его консистенции зависят от материала, подлежащего дезинфекции. Дезинфекция может быть достаточной процедурой для обеззараживания только таких медицинских инструментов, которые не проникают через естественные барьеры организма (ларингоскопы, цистоскопы и т.д.). Некоторые вещества (борная кислота, мертиолат, глицерин) применяют как консерванты для приготовления лечебных и диагностических сывороток, вакцин и др.
Физические методы.
Кипячение. Шприцы, мелкий хирургический инструментарий, предметные и покровные стекла и некоторые другие предметы помещают в стерилизаторы, в которые наливают воду. Для устранения жесткости и повышения температуры кипячения к воде добавляют 1 – 2% раствор бикарбоната натрия. Кипячение производят не менее 30мин. При кипячении некоторые вирусы (например, вирус гепатита В) и споры бактерий сохраняют жизнеспособность.
Пастеризация. Основана на антибактериальном действии температуры в отношении вегетативных клеток, но не бактериальных спор. Нагревание материала производится при температуре 50 – 60 °С в течение 5 – 10 минут с последующим быстрым охлаждением. Обычно пастеризуют напитки и пищевые продукты (вино, пиво, соки, молоко и др.).
Воздействие ионизирующих излучений. УФ с длиной волны 260 – 300мкм обладает достаточно выраженным микробицидным действием, но некоторые виды микробов и споры резистентны к УФ. Поэтому УФ-облучение не способно обеспечить полного уничтожения микрофлоры – стерилизацию объекта. Обработку УФ обычно используют для частичного обеззараживания (дезинфекции) крупных объектов: поверхностей предметов, помещений, воздуха в медицинских учреждениях, микробиологических лабораториях и др.
Гамма-излучение. Обладает выраженным микробицидным действием на большинство микроорганизмов, включая вегетативные формы бактерий и споры большинства видов, грибы, вырусы. Применяют для стерилизации пластиковой посуды и медицинских инструментов одноразового использовании. Следует иметь в виду, что обработка гамма-излучением не обеспечивает уничтожения таких инфекционных агентов, как прионы.
Методика постановки РНГА.
РНГА является своеобразной модификацией РА. Сущность реакции состоит в том, что молекулы антигена адсорбируются на поверхности эритроцитов. Такие «нагруженные» антигенами эритроциты приобретают способность агглютинироваться иммунной сывороткой, специфичной для данного антигена .Эритроциты склеиваются и выпадают в осадок ,образуя на дне пробирки гемагглютинат. В последнее время РНГА получила широкое распространение благодаря высокой чувствительности, экспрессности и методической простоте постановки.
№ 13 ПОСТАНОВКА РНГА
1. Внесение раствора 1.
Во все лунки планшетов вносят по 0,025 мл раствора 1.
2. Внесение раствора дифтерийного анатоксина в рабочем разведении (1-ый положительный контроль - для оценки чувствительности диагностикума).
В первую лунку 1-го вертикального ряда планшета (A1) вносят 0,025 мл дифтерийного анатоксина (в разведении 1:100 или 0,1 Lf/мл) и титруют с двукратным шагом до 8-ой лунки (H1) включительно.
3. Внесение надосадочной жидкости среды культивирования контрольного токсигенного штамма коринебактерий дифтерии (2 положительный контроль - для оценки качества питательной среды и условий культивирования штаммов).
В 1-ую лунку 2-го вертикального ряда (A2) вносят 0,025 мл этой пробы и титруют с двукратным шагом до 8-ой лунки (H2) включительно (от 1:2 до 1:256).
4. Внесение надосадочной жидкости среды культивирования контрольного нетоксигенного штамма коринебактерий дифтерии (1-й отрицательный контроль - для оценки специфичности диагностикума).
В 1-ую лунку 3-го вертикального ряда (A3) вносят 0,025 мл этой пробы и титруют с двукратным шагом до 8-ой лунки (H3) включительно (от 1:2 до 1:256).
5. Внесение пробы жидкой питательной среды, без материала (2-й отрицательный контроль - на отсутствие способности среды культивирования вызывать агглютинацию диагностикума).
В 1-ую лунку 4-го вертикального ряда (A4) вносят 0,025 мл среды культивирования и титруют с двукратным шагом до 5-ой лунки (E4) включительно (от 1:2 до 1:32).
6. Внесение исследуемых проб.
В первые лунки оставшихся рядов (с 5 по 12) вносят по 0,025 мл надосадка среды культивирования исследуемого материала и титруют с двукратным шагом до 8-ой лунки включительно (от 1:2 до 1:256).
Пробирки с исследуемыми и контрольными пробами перед взятием материала не встряхивать!
7. Внесение рабочего разведения диагностикума (0,5-процентной концентрации).
а) В 2 - 3 лунки, содержащие только раствор 1, вносят по 0,025 мл диагностикума (3-й отрицательный контроль - на отсутствие неспецифической агглютинации диагностикума. Контроль ставят на каждом планшете!).
б) Во все лунки с исследуемым материалом (см. пункт 6), положительными (см. пункты 2, 3) и отрицательными (см. пункты 4, 5) контролями вносят по 0,025 мл диагностикума.
Содержимое лунок перемешивают легким постукиванием пальца по краю планшета. Планшеты закрывают крышками и оставляют на ровной поверхности при температуре 20° C (перемещение пластин до учета результатов реакции исключается). Через 2,5 - 3,5 часа производят учет результатов реакции. Допускается учет результатов реакции через 18 - 24 часа.
Учет результатов осуществляется визуально - по степени агглютинации эритроцитов:
++++ гемагглютинат тонким слоем выстилает все дно лунки;
+++ агглютинировавшие эритроциты ровным слоем выстилают дно лунки, но размер агглютината меньше, может наблюдаться фестончатое утолщение края осадка;
++ части лунки, окружены слоем эритроцитов в виде кольца;
+ на дне лунки образуется широкое, плотное кольцо с незначительной агглютинацией по краю; МЕТОДЫ ПОСЕВОВ В зависимости от цели исследования, характера посевного материала и среды используют различные методы посева. Все они включают обязательную цель: оградить посев от посторонних микробов, поэтому посев производят в асептических условиях. Для посевов на плотные питательные среды применяют шпатель, бактериологическую петлю, иглу, тампон. При посеве проводят петлей по поверхности среды линии, оставляя при этом клетки бактерий на среде. После посева чашки закрывают и переворачивают их вверх дном. Надписи на чашках делают со стороны дна, а на пробирках - в верхней части. При посеве на жидкую среду петлю слегка погружают в жидкость и растирают посевной материал на стенке пробирки, после чего смывают его средой.
№14 МЕТОДЫ КУЛЬТИВИРОВАНИЯ И ВЫДЕЛЕНИЯ ЧИСТОЙ КУЛЬТУРЫ БАКТЕРИЙ Для успешного культивирования, помимо правильно подобранных сред и правильно произведенного посева, необходимы оптимальные условия: температура, влажность, аэрация (снабжение воздухом). Культивирование анаэробов сложнее, чем аэробов, для удаления воздуха из питательной среды используют различные способы. Выделение отдельных видов бактерий (чистой культуры) из исследуемого материала, содержащего, как правило, смесь различных микроорганизмов, является одним из этапов любого бактериологического исследования. Чистой культурой микробовполучают из изолированной микробной колонии. При выделении чистой культуры из крови (гемокультуры) ее предварительно «подращивают» в жидкой среде: 10-15 мл стерильно взятой крови засевают в 100-150 мл жидкой среды. Соотношение засеваемой крови и питательной среды 1:10 не случайно - так достигается разведение крови (неразведенная кровь губительно действует на микроорганизмы).
Этапы выделения чистой культуры бактерий I этап (нативный материал) Микроскопия (ориентировочное представление о микрофлоре). Посев на плотные питательные среды (получение колоний). II этап (изолированные колонии) Изучение колоний (культуральные свойства бактерий). Микроскопическое изучение микробов в окрашенном мазке (морфологические свойства бактерий). Посев на скошенный питательный агар для выделения чистой культуры. III этап (чистая культура) Определение культуральных, морфологических, биохимических и других свойств для идентификации культуры бактерий
Выделение чистых культур микроорганизмов
Чистой культурой называют такую культуру, которая содержит микроорганизмы одного вида. Выделение чистых культур бактерий - обязательный этап бактериологического исследования в лабораторной диагностике инфекционных болезней, в изучении микробной загрязненности различных объектов окружающей среды, и, в целом, при любой работе с микроорганизмами. Исследуемый материал (гной, мокрота, фекалии, кровь и другой материал от больных; вода, почва, воздух, пищевые продукты, трупы животных и человека, переносчики) обычно содержит ассоциации микробов. Выделение чистой культуры позволяет изучить морфологические, культуральные , биохимические, антигенные и другие признаки, по совокупности которых определяется видовая и типовая принадлежность возбудителя, то есть производится его идентификация. Для выделения чистых культур микроорганизмов используют методы, которые можно разделить на несколько групп.
* Метод Пастера - последовательное разведение исследуемого материала в жидкой питательной среде до концентрации одной клетки в объеме (имеет историческое значение). * Метод Коха («пластинчатые разводки») - последовательное разведение исследуемого материала в расплавленном агаре (температура 48-50 ° С), с последующим разливом в чашки Петри, где агар застывает. Высевы делают, как правило, из трех-четырех последних разведений, где бактерий становится мало и, в дальнейшем, при росте на чашках Петри появляются изолированные колонии, образующиеся из одной исходной материнской клетки. Из изолированных колоний в глубине агара получают чистую культуру бактерий пересевом на свежие среды. * Метод Шукевича - применяется для получения чистой культуры протея и других микроорганизмов обладающих «ползущим» ростом. Посев исследуемого материала производят в конденсационную воду у основания скошенного агара . Подвижные микробы (протей) способны подниматься вверх по скошенному агару , неподвижные формы остаются расти внизу на месте посева. Пересевая верхние края культуры можно получить чистую культуру. * Метод Дригальского - широко применяется в бактериологической практике, при этом исследуемый материал разводят в пробирке стерильным физиологическим раствором или бульоном. Одну каплю материала вносят в первую чашку и стерильным стеклянным шпателем распределяют по поверхности среды.
Затем этим же шпателем (не прожигая его в пламени горелки) делают такой же посев во второй и третьей чашках. С каждым посевом бактерий на шпателе остается все меньше и меньше и, при посеве на третью чашку, бактерии будут распределяться по поверхности питательной среды отдельно друг от друга. Через 1-7 сут выдерживания чашек в термостате (в зависимости от скорости роста микроорганизмов) на третьей чашке каждая бактерия дает клон клеток, образуя изолированную колонию, которую пересевают на скошенный агар с целью накопления чистой культуры. * Метод Вейнберга . Особые трудности возникают при выделении чистых культур облигатных анаэробов. Если контакт с молекулярным кислородом не вызывает сразу же гибели клеток, то посев производят по методу Дригальского , но после этого чашки сразу помещают в анаэростат . Однако чаще пользуются методом разведения. Сущность его заключается в том, что разведения исследуемого материала проводят в расплавленной и охлажденной до 45-50 ° С агаризированной питательной среде. Делают 6-10 последовательных разведений, затем среду в пробирках быстро охлаждают и заливают поверхность слоем смеси парафина и вазелинового масла, чтобы помешать проникновению воздуха в толщу питательной среды. Иногда питательную среду после посева и перемешивания переносят в стерильные трубки Бурри или капиллярные пипетки Пастера, концы которых запаивают. При удачном разведении в пробирках, трубках Бурри , пипетках Пастера вырастают изолированные колонии анаэробов. Чтобы изолированные колонии хорошо были видны, используют осветленные питательные среды. Для извлечения изолированных колоний анаэробов, пробирку слегка нагревают, вращая ее над пламенем, при этом агар , прилегающий к стенкам, плавится и содержимое пробирки в виде агарового столбика выскальзывает в стерильную чашку Петри. Столбик агара разрезают стерильным пинцетом и извлекают колонии петлей. Извлеченные колонии помещают в жидкую среду, благоприятную для развития выделяемых микроорганизмов (например, среду Китта-Тароцци ). Агаризированную среду из трубки Бурри выдувают, пропуская газ через ватную пробку. * Метод Хангейта - когда хотят получить изолированные колонии бактерий с особенно высокой чувствительностью к кислороду (ст рогие аэробы) используют метод вращающихся пробирок Хангейта . Для этого расплавленную агаризированную среду засевают бактериями при постоянном токе через пробирку инертного газа, освобожденного от примеси кислорода. Затем пробирку закрывают резиновой пробкой и помещают горизонтально в зажим, вращающий пробирку, среда при этом равномерно распределяется по стенкам пробирки и застывает тонким слоем. Применение тонкого слоя в пробирке, заполненной газовой смесью, позволяет получить изолированные колонии, хорошо видимые невооруженным глазом. * Выделение отдельных клеток с помощью микроманипулятора . Микроманипулятор - прибор, позволяющий с помощью специальной микропипетки или микропетли извлекать одну клетку из суспензии. Эту операцию контролируют под микроскопом. На предметном столике микроскопа устанавливают влажную камеру, в которую помещают препарат «висячая капля». В держателях операционных штативов закрепляют микропипетки ( микропетли ), перемещение которых в поле зрения микроскопа осуществляется с микронной точностью благодаря системе винтов и рычагов. Исследователь, глядя в микроскоп, извлекает отдельные клетки микропипетками и переносит их в пробирки со стерильной жидкой средой для получения клона клеток.