Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курсовая работа.docx
Скачиваний:
0
Добавлен:
07.04.2025
Размер:
6.25 Mб
Скачать
  1. Построить в масштабе четыре графика фпв мгновенных значений и огибающих угп, и суммы гармонического сигнала с угп.

Закон распределения огибающей гауссовской помехи

(34)

ФПВ мгновенных значений принятого сигнала

(35)

Рисунок 17- График ФПВ мгновенных значений шума и суммы сигнал+шум

ФПВ сигнала и шума:

огибающая гауссовской помехи, распределенная по закону Релея

(36)

огибающая принимаемой суммы гармонического сигнала + УГП, подчиняющаяся обобщенному распределению Релея

(37)

Рисунок 18- График ФПВ огибающей шума и суммы сигнал+шум

9. С учетом заданного вида приема (детектирования) сигнала дискретной модуляции:

  1. Рассчитать среднюю вероятность ошибки в двоичном дкс, скорость передачи информации по двоичному симметричному дкс. Показатель эффективности передачи сигнала дискретной модуляции по нкс;

За количественную меру помехоустойчивость в системах электросвязи принимают среднюю на бит вероятность ошибки: Рош.ср.=Р(0)Р(1/0)+Р(1)Р(0/1).

При равенствах априорных вероятностей Р(0)=Р(1)=0.5, а также условных вероятностей Р(1/0)=Р(0/1)=Рош (условие симметричности двоичного ДКС), средняя на бит вероятность ошибки равна Рош.ср.=Рош.

средняя вероятность ошибки при некогерентном приеме сигналов ДЧМ

(38)

энтропия ошибочных решений (бит)

(39)

длительность посылки (с)

(40)

скорость передачи информации (бит/с)

(41)

показатель эффективности системы передачи

(42)

  1. Изобразить схему приемника сигналов дискретной модуляции и коротко описать принцип его работы, пояснить случаи, когда он выносит ошибочные решения.

Рисунок 19- Схема приемника сигналов ДЧМ

Полосовые фильтры на входе приемника ДЧМ выделяют сигналы с частотами или , соответствующие передаче «0» или «1». Пусть по каналу связи передается сигнал с частотой Тогда через ПФ, настроенный на частоту проходит сумма сигнала и помехи N(t). А через другой ПФ проходит только помеха. В канале, с сигналом амплитудный детектор выделяет огибающую сигнала и помехи, распределенной по обобщенному закону Рэлея (Райса). В канале с помехой детектор выделяет огибающую только помехи, которая распределена по обычному закону Рэлея. Если помеха достаточно мала, то напряжение на выходе детектора канала с помехой будет меньше напряжения на выходе канала с сигналом и помехой. Следовательно их разность в вычитающем устройстве (ВУ) окажется положительной и решающее устройство выдаст 1. При сильной помехе напряжение на выходе детектора канала без сигнала может стать больше, чем напряжение на выходе детектора канала с сигналом, их разность в ВУ окажется отрицательной и решающее устройство ошибочно выдаст 0.

10. Рассматривая отклик декодера пру как случайный дискретный сигнал на выходе -ичного дкс:

  1. рассчитать распределение вероятностей дискретного сигнала на выходе декодера, скорость передачи информации по L-ичному ДКС, относительные потери в скорости передачи информации по -ичного ДКС;

Рассчитаем распределение вероятностей дискретного сигнала на выходе декодера:

вероятность правильного приема

(43)

Таблица 9-Распределение вероятностей дискретного сигнала на выходе детектора:

n

0

1

2

3

4

5

6

7

0.0013

0.0214

0.1359

0.3413

0.3413

0.1359

0.0214

0.0013

0.0018

0.0218

0.1359

0.3405

0.3405

0.1359

0.0218

0.0018

Определим скорость передачи информации по L-ичному ДКС:

энтропия восстановленного L-ичного сообщения (бит)

(44)

скорость передачи информации (бит/сек)

(45)

Зная производительность H`y L-ичного источника (скорость ввода информации в ДКС) и скорость передаваемой по ДКС информации RL, найдем величину относительных потерь в скорости:

(46)

б) построить в масштабе график закона распределения вероятностей отклика декодера и сравнить его с законом распределения вероятностей отклика квантователя.

Рисунок 20- График закона распределения вероятностей отклика декодера

Из-за шума в канале передачи возрастает дисперсия принимаемого случайного сигнала, что видно по увеличению вероятности при pвых(1) и pвых(6).