Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Вступительные экзамены БНТУ / Сборник задач по эт, машинам

.pdf
Скачиваний:
0
Добавлен:
15.03.2025
Размер:
1.04 Mб
Скачать

 

 

U2% =β(uk.acosϕ2 +uk.psinϕ2 )ukcos(ϕ2 −ϕk ),

где β =

I2

=

I1

– коэффициент нагрузки; ϕ2 – угол сдвига фаз между

I

 

 

 

I

напряжением и током в нагрузке; ϕk – угол сдвига фаз в опыте коротко-

го замыкания.

КПД трансформатора определяют по формуле

η= βSнcosϕ2 ,

βSнcosϕ2 +β2Pk + Po

где Sн – номинальная мощность трансформатора.

В трехфазных трансформаторах алгебраическая сумма мгновенных синусоидальных магнитных потоков в сердечнике равна нулю, поэтому необходимость в "нейтральном" стержне отпадает и трехфазный трансформатор выполняют в виде трехстержневого. Под номинальными данными трехфазных трансформаторов понимают полную номинальную мощность трех фаз:

Sн = 3UI= 3UI,

где U, U– номинальные линейные напряжения; I, I– номи-

нальные линейные токи; мощность потерь холостого хода и короткого замыкания на три фазы Po , Pk ; номинальный КПД ηн, который зада-

ется при активной нагрузке (cos ϕ2 = 1) и при коэффициентах нагрузки β = 1, β = 0,5; группы соединений обмоток трансформатора YYo 12 или Y11 (звезда – звезда с нейтральным проводом, группа 12; звезда – треугольник, группа 11).

4.2. Анализ магнитных цепей с постоянной намагничивающей силой

Пример 4.2.1

На рис. 4.2.1 даны геометрические размеры магнитопровода в миллиметрах, выполненного из электротехнической стали марки 1211. Требуется определить магнитодвижущую силу F = wI , которая необхо-

дима для создания магнитного потока Ф = 2Ч10-3Вб, значение тока в катушке I, содержащей w =1000 витков, и индуктивность катушки L.

61

 

140

 

 

25

 

 

+

 

l′2

 

I

l1

 

150

 

0

 

 

 

 

=2

 

 

l

 

 

l″2

 

 

 

 

 

25

 

 

 

 

50

40

75

25

 

Рис.4.2.1

 

Решение.

Магнитную цепь делим на участки так, чтобы в пределах каждого материал и сечение магнитопровода оставались неизменными. В данном случае таких участков три. Контур, по которому составляем уравнение, пользуясь законом полного тока, проходит по средней магнитной линии:

l1 =150-25=125мм;

l2 =l2′ +l2′′ =125+2Ч107Ч5-2=338

мм. Определяем магнитную

индукцию в каждом участке цепи, для чего находим сечения магнитопроводов

S1 = 40Ч50=2000 мм2 = 2Ч10-3 м2;

S2 =50Ч25=1250мм2 = 1,25Ч10-3 м2.

Магнитная индукция

B = Ф

= 2Ч10-3

=1Тл;

B

=

Ф

=

2Ч10-3

=1,6 Тл.

 

 

1

S1

2Ч10-3

 

2

 

S2

1,25Ч10-3

 

 

 

 

 

 

Напряженность магнитного поля для ферромагнитных материалов определяем по кривым намагничивания B = f (H ), которые приводятся в

справочной учебной литературе. В данном случае для электротехнической стали марки 1211 имеем: H1 =502А/м и H2 = 4370 А/м. Для воз-

душного зазора lo напряженность магнитного поля определяется из равенства

H0 = 1 B0 =8Ч105Ч1,6=1280000 А/м.

μ0

Пренебрегая выпучиванием магнитного поля в зазоре, принимаем B0 = B2 . Искомая магнитодвижущая сила, равная произведению тока

на число витков катушки, по которой он протекает, согласно закону полного тока

F = ωI = H1l1 + H2l2 + H0l0 =502Ч0,125+4370Ч0,338+

+1280000Ч2Ч10-3 4000 А.

62

Рис. 4.2.2.1

Ток в катушке

 

 

 

I =

F

=

4000

=4 А.

 

Индуктивность катушки

w

1000

 

 

 

 

 

 

 

1000Ч2Ч10-3

 

L =

Ψ

=

=

Гн,

I

I

 

4

=0,5

 

 

 

 

 

 

где Ψпотокосцепление.

Пример 4.2.2

На рис. 4.2.2.1 изображен тороидальный магнитопровод, выполненный

из электротехнической стали

марки

1512. Заданы

размеры:

l =30 см,

l0 = 0,1см,

магнитодвижущая

сила

F = wI =1000

А;

w =1000 витков. Требу-

ется определить, какой поток замыкается по магнитопроводу.

Решение.

Задача является обратной. Поэтому для ее решения необходимо построить кривую зависимости магнитного потока от маг-нитодвижущей силы Ф = f (wI ), а за-

тем по заданной магнитодвижущей силе определить графически магнитный поток Ф. Для построения зависимости

Ф = f (wI ) необходимо задаться несколькими значениями магнитного

потока и для всех этих значений определить магнитодвижущую силу, т.е. решить несколько прямых задач (обычно достаточно 3 - 5 значений). Первое значение магнитного потока выбирается из расчета, что магнитное сопротивление стали Rмст = 0 , а основное сопротивление

представляет сопротивление воздушного зазора R0 . Полученное значе-

ние потока будет несколько завышенным, поэтому далее задаемся меньшими значениями потока. Если пренебречь Rмст , то закон полного

тока для рассматриваемой цепи запишем в виде

откуда

wI = H0l0 ,

 

= wI =1000

 

 

H0

=106

А/м.

 

l0 10-3

 

 

Магнитная индукция

63

B =

H0

=

106

=1,25Тл.

(8 105 )

0

(8Ч105 )

 

 

Магнитный поток

Ф = B0S =1,25Ч4Ч10-4 =5Ч10-4 Вб.

Напряженность магнитного поля определяем для B =1,25 Тл по кри-

вым намагничивания B = f (H ) для стали 1512, которые приводятся в литературе. В данном случае Hст = 600А/м;

3) Ф = 4Ч10-4 Вб;

B =1,0 Тл; Hст = 200 А/м;

 

 

Hстl =180 А;

H0l0 =103А;

 

 

wI = Hстl + H0l0 =180+103=1180 А.

 

Результаты вычислений приведены далее

 

1) Ф =5Ч10-4 Вб;

B =1,25 Тл; Hст = 600 А/м;

Hстl =180 А;

H0 =106 А/м;

H0l0 =103 А;

wI =1180 А.

2) Ф = 4,5Ч10-4 Вб;

B =1,125 Тл; Hст =300 А/м;

Hстl =90 А;

H0 =9Ч105 А/м;

H0l0 =900 А;

wI =990 А

Hстl = 60 А;

H0 =8Ч105 А/м;

H0l0 =800 А;

wI =860 А

По полученным данным строим зависимость Ф = f (wI ) (рис. 4.2.2.2). По

Ф•10–4 Вб

 

 

 

 

Фиск

Ф(HCTl)

 

Ф(Iw)

 

 

 

 

HCTl

 

Ф(Iw–H0l0)

H0l0

(Iw)зад

 

 

 

 

 

Iw, A

 

 

Рис.4.2.2.2

заданной магнитодвижущей силе находим Фиск = 4,53Ч10-4 Вб.

Задача может быть решена с помощью построения так называемой опрокинутой характеристики (рис. 4.2.2.2). Для этого строится зависимость Ф = f ( HСТl ), и в точке пересечения ее с опрокинутой харак-

64

теристикой (прямая линия), которая строится при RMCT = 0 , находим искомое значение потока Фиск.

Пример 4.2.3

Магнитопровод 1 и ярмо 2 электромагнита (рис. 4.2.3) выполнены из стали одинакового сечения Sс = 2,5 см2 и имеют суммарную длину lс = 0,3 м. Определить силу F, с которой ярмо притягивается к магнитопроводу, если ток в обмотке I = 1,5 А, число витков обмотки w = 1000, длина воздушного зазора δ = 0,75 мм. Магнитная характеристика стали задана в табл. 4.3.

 

 

 

 

 

1,0

 

Таблица 4.2.3

В, Т

0

0,4

0,67

0,87

1,1

1,2

1,3

H, А/м

0

100

200

300

400

500

600

700

+

боте

1

w

lc

 

δ

Примечание. По мере притяжения ярма зазор δ уменьшается и сила F возрастает, расчет ведется для заданного максимального зазора.

Решение.

При изменении расстояния между магнитопроводом и ярмом имеет место изменение энергии магнитного поля

 

 

 

 

 

LI 2

 

 

I 2

 

 

 

2

 

 

 

 

 

 

dWэм = d

 

 

=

 

dL ,

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 4.2.3

 

 

 

 

 

 

 

которое должно равняться ра-

 

 

 

 

сил, вызывающих перемещение

Fdδ, т.е. dWэм = Fdδ,

откуда

F =

I 2

 

dL

.

Ввиду

малости воздушного

зазора можно принять

 

2

 

dδ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dL

=

 

L

. Пренебрегая магнитным сопротивлением в теле электромаг-

dδ

 

δ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

нита, с помощью преобразований находим

 

 

 

 

 

B02

 

 

 

L

=

ψ

=

Ф w

=

B0S0w

или LI 2 = B S

 

wI = B S

 

H

 

δ =

S

 

δ, откуда

 

I

 

I

I

 

 

 

μ0

 

 

 

 

 

 

 

 

 

0

0

 

0

0

 

0

 

 

0

 

65

B2

F = 00 S0 ,

В0, S0 – индукция и сечение в воздушном зазоре.

Выражая силу F в ньютонах (Н), магнитную индукцию В0 – в тесла (Т), сечение S0 – в см2 и подставляя значение магнитной постоянной μ0 =

4π·10-7Г/м, получаем расчетную формулу F = 40B02S0 (Н). Подставляя

численное значение заданных величин, вычисляем магнитодвижущую силу wI =1000Ч1,5=1500 А, строим вебер-амперную характеристику

Фст(wI ) по заданной кривой намагничивания Bст(Hст) и далее опрокинутую характеристику воздушного зазора Ф(wI H0 ). Из пересече-

ния характеристик находим, что индукция в воздушном зазоре B0 = 1,12 Т. Тогда искомая сила притяжения F = 40·1,12·5 = 251 Н.

I

 

 

 

4.2.4. Определить ток катушки (рису-

 

 

 

нок 4.2.4), при котором магнитная ин-

 

 

 

 

 

 

 

 

 

 

дукция в воздушном зазоре В=1,256

 

w

 

 

l0

Тл, если l0=2 мм, ϖ=2000 витков. По-

 

 

 

 

током рассеяния

и выпучиванием

 

 

 

 

 

 

 

 

 

магнитного потока в воздушном зазо-

 

 

 

 

 

ре пренебречь. Принять, что магнит-

 

 

 

 

 

ная проницаемость

ферромагнитного

 

Рис.4.2.4

 

 

 

сердечника μr=. Определить индук-

 

 

 

 

тивность катушки при условии, что

 

 

 

 

 

сечение ферромагнитного сердечника

представляет квадрат с длиной стороны a=20 мм.

4.2.5. На замкнутое кольцо из литой стали на-

 

мотана обмотка с числом витков ϖ=500. Разме-

 

ры кольца в мм указаны на рисунке 4.2.5. Опре-

 

делить ток в обмотке, при котором магнитный

8

поток в кольце будет Ф=3,6 10-4 Вб. Какой надо

5

создать ток I2 в обмотке для возбуждения

 

прежнего магнитного потока, если сердечник

 

будет разрезан радиально с образованием воз-

 

душного зазора l0=0,5 мм. Определить индук-

20

тивности катушки в первом и втором случаях.

Рис.4.2.5

 

66

0,5

80

50

20

Рис.4.2.6

4.2.6. На тороидальный сердечник из литой стали с воздушным зазором намотана катушка с числом витков ϖ=500. Размеры кольца в мм указаны на рисунке 4.2.6. Определить магнитный поток и индуктивность при токе в катушке I=0,4 А. Выпучиванием линий поля в воздушном зазоре пренебречь.

4.2.7. Определить воздушный зазор l0 магнитной цепи (рисунок 4.2.7а) при индукции В=1,2 Тл. Зависимости магнитной индукции от магнитодвижущей силы изображены на рисунке 4.2.7б: кривая А – без воздушного зазора, кривая Б – с воздушным зазором. Длина ферромагнитного

 

 

В, Тл

 

S

 

2

 

 

1,6

 

 

 

А

 

 

1,2

I

0

Б

 

 

 

l

0,8

 

 

 

 

 

 

0,4

I

 

 

0

 

 

500 1000 1500 2500 A

 

 

0

lст

 

Рис.4.2.7

б)

а)

 

 

 

 

 

участка цепи lст=20 см, сечение магнитопровода по всей его длине одинаково и составляет Sст=5 см2, потоками рассеяния пренебречь.

4.2.8. Каким будет магнитный поток в сердечнике магнитной цепи задачи 4.2.5, если сила тока в обмотке составит 0,4 А. Определить индуктивность цепи при данном токе. Потоком рассеяния пренебречь.

67

4.2.9. Сердечник магнитной цепи, изо-

 

 

120

 

 

браженной на рисунке 4.2.9, собран из

 

 

 

 

 

 

 

 

 

листовой стали 3413 (см. приложение

 

 

 

 

 

2). Размеры магнитопровода указаны

 

 

 

 

 

на рисунке в мм. Число витков обмот-

 

 

60

 

 

ки ϖ=200. При каком токе в обмотке

 

 

 

 

магнитный поток Ф в сердечнике бу-

 

 

 

80

30

дет равен 21 10-4 Вб, если толщина

 

 

 

 

стали в пакете d=50 мм?

 

30

 

 

 

 

 

 

 

 

40

 

 

 

 

 

 

Рис.4.2.9

 

300

 

4.2.10. Определить магнито-

 

 

 

 

движущую

силу

обмотки,

80

 

необходимую для создания в

80

воздушном зазоре магнитной

 

 

 

цепи, изображенной на ри-

 

 

сунке 4.2.10, индукции В=1,2

 

360

Тл. Размеры магнитной цепи

l0

в мм указаны на рисунке,

100

80

толщина пакета d=80 мм.

Материал сердечника – сталь

 

 

3413 (см. приложение 2). Ве-

80

 

личина

воздушного

зазора

 

l0=0,8 мм. Выпучиванием си-

 

 

Рис.4.2.10

 

ловых линий магнитного по-

 

ля в воздушном зазоре пре-

 

 

 

 

небречь.

 

 

 

 

160

4.2.11.Определить индукцию в воздушном зазоре магнитной цепи задачи 4.2.10, при условии, что магнитодвижущая сила, создаваемая током в обмотке, составляет F=1000 А.

4.2.12.Определить магни-

тодвижущую силу, создаваемую током в обмотке,

68

поток в правом стержне при которой магнитный магнитной цепи (рисунок

4.2.12) будет Ф=5,5 10-4

Вб. Магнитная цепь собрана из листовой стали 2013 (см. приложение 1). Толщина стали в пакете d=25 мм. Определить магнитные потоки во всех стержнях магнитной цепи при F=280 А.

+ A

U

B –

 

 

100

 

300

100

100

 

100

 

300

a

b

 

Рис.4.2.13

24

 

20

24

 

 

100

 

34

30

 

40

20

24

 

20

Рис.4.2.12

 

4.2.13. Обмотки магнитной цепи имеют соответственно

ϖ1=200 и ϖ2=150 витков, со-

противления их R1=0,6 Ом и R2=0,4 Ом. Магнитопровод выполнен из листовой электротехнической стали 2013 (см. приложение 1), размеры в мм указаны на рисунке 4.2.13. Определить величину магнитного потока в сердеч-

100 нике, если напряжение U=4 В приложено к зажимам А и В, а зажимы a и b– замкнуты. Коэффициент заполнения сечения сталью считать равным единицы.

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.14. На два одинаковых магни-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

топровода (рисунок 4.2.14) из

l1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

электротехнической стали 3413

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(см. приложение 2) уложена об-

 

 

 

w

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

щая обмотка. В одном из них име-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ется воздушный зазор в 1 мм, а

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

индукция в нем В0=0,8 Тл. Пло-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

69

 

 

 

Рис. 4.2.14

 

 

 

 

 

щадь поперечного сечения по всей длине сердечника равна 8 см2, а длина средней силовой линии 60 см. Определить, во сколько раз магнитный поток во втором будет меньше, чем в первом.

4.2.15. Определить число витков ϖ обмотки кольцевого электромагнита, выполненного из литой стали, а также абсолютную и относительную магнитную проницаемости сердечника, если при включении его в сеть постоянного тока в сердечнике возникает поток 3 10-3 Вб, а по обмотке проходит ток I=6 А. Сечение сердечника S=20 см2, а длина средней силовой линии его lср=60 см.

4.3.Трансформаторы

Пример 4.3.1

Для трехфазного трансформатора мощностью Sном =100кВА, соединение обмоток которого Y / Y 12, известно: номинальное напряжение на зажимах первичной обмотки трансформатора U1ном = 6000B ,

напряжение холостого хода на зажимах вторичной обмотки трансформатора U2x = 400B , напряжение короткого замыкания uк =5,5% ,

мощность короткого замыкания Pк = 2400Вт, мощность холостого хода P0 = 600Вт, ток холостого хода I1фx = 0,07I1ном.

Определить: 1) сопротивления обмоток трансформатора R1, X1, R2 и X2; 2) полное сопротивление намагничивающей цепи Zo и его составляющие Ro и Хo, которыми заменяется магнитная цепь трансформатора; 3) угол магнитных потерь δ.

Построить характеристики трансформатора: 1) зависимость напряжения U2 от нагрузки U2 = f (β) (внешняя характеристика); 2) за-

висимость коэффициента полезного действия от нагрузки η= f (β), β–коэффициент нагрузки трансформатора (коэффициент мощности нагрузки принять cosϕ2 =0,75).

Построить векторную диаграмму трансформатора при нагрузке, составляющей 0,8 от номинальной мощности трансформатора Sном и

70