Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вступительные экзамены БНТУ / Электротехника.docx
Скачиваний:
12
Добавлен:
15.03.2025
Размер:
4.97 Mб
Скачать

3 ) Трехфазный трансформатор, его конструкция

Э то такой трансформатор, у которого на каждую трансформируемую фазу приходится 3 обмотки. Наибольшее распространение получил трансформатор с одной первичной и двумя вторичными обмотками. За номинальную мощность берется мощность наиболее загруженной обмотки.

Трехфазный трансформатор имеет основу – магнитный сердечник, собранный из трёх ферромагнитных стержней. На стержнях располагаются первичная обмотка высокого напряжения и вторичная обмотка низкого напряжения. Для соединения фаз первичных обмоток применяют схемы «треугольник» либо «звезда».

В  нагрузочном режиме очень важно знать, как влияют параметры нагрузки на КПД и изменение напряжения на зажимах вторичной обмотки.

Коэффициентом полезного действия трансформатора называется отношение активной мощности, передаваемой нагрузке, к активной мощности, подводимой к трансформатору.

Трехфазный трансформатор состоит из: магнитопровода (фиксирует обмотки и направляет магнитный поток. Эти элементы бывают стержневыми, бронестержневыми и броневыми); обмотки (высокого и низкого напряжения. Между ними расположен изоляционный материал. Изготовлены из медной или алюминиевой проволоки. Каждой фазе соответствует пара обмоток); вводы/выводы (высоковольтные и низковольтные); трансформаторный бак (этот компонент присутствует в масляных моделях); устройства переключения РПН или ПБН (с их помощью изменяют напряжение на первичной обмотке для обеспечения напряжения на вторичной обмотке, соответствующего установленному значению); устройства контроля и сигнализации (гарантируют надежное и безопасное функционирование трансформатора, подают сигналы о возникновении нештатных ситуаций).

4) Потери энергии и кпд трансформатора

В процессе трансформирования электрической энергии часть энергии теряется в трансформаторе на покрытие потерь. Потери в трансформаторе разделяются на электрические и магнитные. Электрические потери. Обусловлены нагревом обмоток трансформаторов при прохождении по этим обмоткам электрического тока. Мощность электрических потерь Pэ пропорциональна квадрату тока и определяется суммой электрических потерь в первичной РЭ1 и во вторичной РЭ2 обмотках:

Магнитные потери происходят главным образом в магнитопроводе трансформатора. Причина этих потерь — систематическое перемагничивание магнитопровода переменным магнитным полем. Это перемагничивание вызывает в магнитопроводе два вида магнитных потерь: потери от гистерезиса РГ связанные с затратой энергии на уничтожение остаточного магнетизма в ферромагнитном материале магнитопровода, и потери от вихревых токов РВТ, наводимых переменным магнитным полем в пластинах. (*2 пт. выше потери в стали)

КПД трансформатора имеет высокое значение. У силовых трансформаторов небольшой мощности он составляет примерно 0,95, а у трансформаторов мощностью в несколько десятков тысяч киловольт-ампер доходит до 0,995.

Определение КПД по формуле с использованием непосредственно измеренных мощностей P1 и P2 даёт большую погрешность. Удобнее эту формулу представить в другом виде:

где – сумма потерь в трансформаторе.

Расчетная формул для определения КПД трансформатора:

где Sн – номинальная полная мощность трансформатора; φ2 – угол сдвига фаз между напряжением и током в нагрузке.

Потери в меди характеризуют потери на активном сопротивлении вторичной обмотки. Чем больше ток, тем больше потери в меди. Потери в меди характеризует параметр Uк трансформатора. Потери в меди обуславливаются наличием в проводах обмоток трансформатора электрического сопротивления. Ток, протекающий в обмотке, создаёт на таком проводнике падение напряжения. На обмотке развивается некоторая электрическая мощность и часть энергии преобразуется в тепло, нагревающее обмотку. Потери в меди можно уменьшить также путём увеличения сечения проводов обмоток. Однако при этом значительно увеличатся размеры, вес и стоимость трансформатора. Поэтому увеличение сечения проводов производится лишь до такой величины, при которой не наблюдается заметного нагрева обмоток.