Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вступительные экзамены БНТУ / Электротехника.docx
Скачиваний:
15
Добавлен:
15.03.2025
Размер:
4.97 Mб
Скачать

2) Режим холостого хода трансформатора. Определение коэффициента трансформации и потерь мощности в стали трансформатора. Работа трансформатора под нагрузкой

Режи ХХ - режим, при котором вторичная обмотка трансформатора разомкнута, а на зажимы первичной обмотки подано переменное напряжение. Опыт ХХ трансформатора проводят для определения коэффициента трансформации, мощности потерь в стали и параметров намагничивающей ветви схемы замещения, проводят его обычно при номинальном напряжении первичной обмотки.

[Трансформатор тока питается, соответственно, током, он не способен нормально функционировать без нагрузки на обмотке. Трансформатор напряжения, в свою очередь, не справится с мощными токовыми загрузками. При включении ТТ без нагрузки потери в сердечнике резко возрастут, трансформатор перегреется и выйдет из строя («пожар стали»). Кроме того, на концах оборванной вторичной цепи появится большая ЭДС, опасная для работы оператора. Поэтому трансформатор тока нельзя включать в линию без подсоединённого к нему измерительного прибора.]

Величина ЭДС, возникающей в обмотках, напрямую зависит от числа витков каждой обмотки. Отношение ЭДС, индуцированных в первичной и вторичной обмотках, называется коэффициентом трансформации и равно отношению количества витков соответствующих обмоток.

П утем подбора числа витков на обмотках можно увеличивать или уменьшать напряжение на потребителе тока с вторичной обмотки.

Если к первичной обмотке трансформатора подключить напряжение U1, а вторичную обмотку соединить с нагрузкой, в обмотках появятся токи I1 и I2. Эти токи создадут магнитные потоки Ф1 и Ф2, направленные навстречу друг другу. Суммарный магнитный поток в магнитопроводе уменьшается. Вследствие этого индуктированные суммарным потоком ЭДС Е1 и Е2 уменьшаются. Действующее значение напряжения U1 остается неизменным. Уменьшение Е1 вызывает увеличение тока I1. При увеличении тока I1 поток Ф1 увеличивается ровно настолько, чтобы скомпенсировать размагничивающее действие потока Ф2. Вновь восстанавливается равновесие при практически прежнем значении суммарного потока.

Потери в стали определяются энергией, затраченной на перемагничивание железа трансформатора и соответствуют току холостого хода трансформатора (за вычетом потерь на активном сопротивлении первичной обмотки). Потери в стали зависят от частоты переменного тока в сети, характеристик стали, подведенного напряжения. Чтобы их уменьшить, необходимо уменьшить напряжение сети или увеличить частоту сети. Потери в стали состоят из двух видов потерь: потери из-за вихревых токов; потери на циклическое перемагничивание.

Потери активной мощности в стали трансформаторов – это потери на перемагничивание и вихревые токи. Определяются потерями холостого хода трансформатора ∆Px, которые приводятся в его паспортных данных. Возникновение вихревых токов в сердечнике можно объяснить следующим образом. Сердечник, изготовленный из стали, представляет собой металлический проводник, помещённый в переменное магнитное поле. В сердечнике так же, как и в витках любой обмотки, будет создаваться индуктированная ЭДС, и по сердечнику будет протекать ток. Так как сечение сердечника велико, то его электрическое сопротивление мало. Поэтому токи, протекающие в сердечнике, достигают больших величин. При этом происходит активное расходование энергии и преобразование её в тепло, которое нагревает сердечник. Величина потерь второго вида, т. е. потерь, возникающих при циклическом перемагничивании, сильно зависят от материала сердечника. Материал сердечника можно представить как бы состоящим из большого числа элементарных магнитиков (магнитных диполей), которые в обычном состоянии расположены хаотически. При внесении такого материала в магнитное поле магнитные диполи начинают поворачиваться в направлении действия магнитного поля. Если магнитное поле переменное, то диполи будут периодически поворачиваться сначала в одну, а потом в другую сторону с частотой изменения данного поля. При этом возникают силы трения и энергия магнитного поля также переходит в тепло, нагревающее сердечник. Потери на перемагничивание значительно уменьшаются, если в качестве материала сердечника трансформаторов применить специальную магнитомягкую сталь, имеющую определённый состав и структуру. Для уменьшения потерь на вихревые токи сердечник собирается не из монолитных стальных брусков, а из отдельных изолированных друг от друга пластин толщиной в несколько десятых долей миллиметра. Кроме того, в состав материала сердечника вводится в качестве присадки кремний. И то и другое способствует увеличению электрического сопротивления сердечника, которое, в свою очередь, влечёт за собой уменьшение величины вихревых токов.