
- •Раздел 1. Электротехника
- •Тема 1.1 Электрическое поле
- •1) Понятие "электрический заряд", "электрическое поле". Характеристики электрического поля: напряжённость, потенциал, электрическое напряжение
- •2) Проводники, полупроводники и диэлектрики. Их краткая характеристика и практическое применение
- •3) Диэлектрик в электрическом поле, поляризация диэлектрика, пробой диэлектрика
- •4) Электрическая ёмкость и единицы ее измерения. Конденсаторы. Соединение конденсаторов. Энергия электрического поля конденсаторов
- •Тема 1.2 Электрические цепи постоянного тока
- •3) Нагревание проводов. Закон Джоуля-Ленца. Плавкие предохранители
- •4) Режимы электрических цепей (номинальный, холостого хода, короткого замыкания)
- •5) Последовательное, параллельное и смешанное соединения резисторов
- •6) Законы Кирхгофа
- •Тема 1.3 Электромагнетизм
- •1) Магнитное поле электрического тока. Магнитная индукция как характеристика интенсивности магнитного поля. Правило буравчика. Магнитный поток. Магнитная проницаемость. Напряжённость магнитного поля.
- •2) Электромагнитная сила, действующая на проводник с током в магнитном поле. Правило левой руки. Взаимодействие параллельных проводников с токами. Принцип действия электромагнитного реле
- •3) Ферромагнитные материалы, их намагничивание и перемагничивание. Магнитомягкие и магнитотвердые материалы
- •5) Преобразование механической энергии в электрическую и электрической в механическую
- •Тема 1.4. Электрические машины постоянного тока
- •2) Электродвигатели постоянного тока. Их применение в отрасли. Пуск, регулирование частоты вращения, реверсирование двигателей постоянного тока. Их применение в отрасли
- •Тема 1.5. Электрические измерения
- •1) Электроизмерительные приборы: их назначение и роль в развитии науки и техники. Классификация электроизмерительных приборов. Условное обозначение электроизмерительных приборов
- •Тема 1.6. Однофазные электрические цепи переменного тока
- •2) Цепь переменного тока с активным сопротивлением. Закон Ома. Активная мощность. Векторная диаграмма
- •3) Цепь переменного тока с индуктивностью. Векторная диаграмма. Реактивное индуктивное сопротивление. Реактивная индуктивная мощность
- •4) Цепь переменного тока с емкостью. Реактивное емкостное сопротивление. Векторная диаграмма. Реактивная емкостная мощность
- •6) Физические процессы в цепях переменного тока при параллельном соединении активного, индуктивного и емкостного сопротивлений. Векторные диаграммы токов. Резонанс токов
- •7) Коэффициент мощности, способы и экономическая целесообразность его повышения
- •Тема 1.7. Трехфазные электрические цепи
- •1) Трехфазная эдс и трехфазный ток. Получение трехфазной эдс. Преимущества трехфазной системы
- •2) Соединение обмоток генератора и потребителей энергии звездой. Фазные и линейные напряжения и токи. Соотношение между фазными и линейными напряжениями и токами. Векторная диаграмма напряжений
- •3) Трехпроводная и четырехпроводная цепи. Значение нулевого провода. Расчет трехпроводных и четырехпроводных цепей с различным характером нагрузки
- •4) Соединение обмоток генератора и потребителей энергии треугольником. Соотношение между фазными и линейными напряжениями и токами. Векторная диаграмма токов
- •5) Мощность трехфазной цепи. Расчет мощности
- •6) Вращающееся магнитное поле, трехфазная система обмоток. Получение вращающегося магнитного поля посредством трехфазной системы токов
- •Тема 1.8. Трансформаторы
- •1) Назначение и применение трансформаторов. Устройство, принцип действия однофазного трансформатора. Величины эдс обмоток
- •2) Режим холостого хода трансформатора. Определение коэффициента трансформации и потерь мощности в стали трансформатора. Работа трансформатора под нагрузкой
- •3 ) Трехфазный трансформатор, его конструкция
- •4) Потери энергии и кпд трансформатора
- •Тема 1.9. Электрические машины переменного тока
- •1) Назначение электрических машин переменного тока, их классификация и применение
- •3) Рабочие характеристики трехфазного асинхронного электродвигателя. Регулирование частоты вращения и реверсирование асинхронного электродвигателя
- •4) Синхронные электрические машины
- •Тема 1.10. Электропривод и аппаратура управления
- •Тема 1.11. Передача и распределение электрической энергии
- •Раздел 2. Основы электроники
- •Тема 2.1. Полупроводниковые приборы
- •1) Полупроводниковые приборы, их достоинства и недостатки. Виды примесей и проводимостей в полупроводниках. Электронно-дырочный (р-n) переход и его свойства. Вольт-амперная характеристика р-n перехода
- •2) Полупроводниковый диод, его устройство, принцип действия и применение. Понятие о пробое диода. Максимальное обратное напряжение и допустимый ток
- •3) Биполярные транзисторы. Устройство, принцип действия и применение. Схемы включения транзисторов. Статические входные и выходные характеристики транзистора
- •4) Понятие о полевом транзисторе
- •5) Тиристоры, их устройство, свойства, применение. Вольт-амперная характеристика тиристора
- •Тема 2.2. Фотоэлектронные приборы
- •1) Фотоэлектронные явления: фотоэлектронная эмиссия, фотопроводимость полупроводников, фотогальванический эффект
- •2) Фотодиоды, фототранзисторы, солнечные фотоэлементы. Область применения
- •Тема 2.3. Электронные выпрямители
- •2) Сглаживающие фильтры
- •3) Управляемые выпрямители. Трехфазные выпрямители
- •Тема 2.4. Электронные усилители
- •Тема 2.5. Электронные генераторы и приборы отображения информации
- •1) Электронный осциллограф, его устройство, назначение. Современные приборы отображения информации
- •Тема 2.6. Интегральные схемы микроэлектроники
- •1) Гибридные, полупроводниковые интегральные микросхемы
- •2) Классификация, маркировка и применение микросхем. Логические элементы или, и, не, их схемы
4) Цепь переменного тока с емкостью. Реактивное емкостное сопротивление. Векторная диаграмма. Реактивная емкостная мощность
Если же произвести
подключение конденсатора к источнику
переменного тока, то процесс его заряда
и разряда будет осуществляться непрерывно.
Это означает, что через ёмкость будет
проходить переменный электрический
ток.
Ток
заряда, который принято считать
положительным, в цепи течет тогда, когда
происходит заряд конденсатора, то есть
на протяжение первой четверти периода.
По мере того, как разница потенциалов
на электродах ёмкости растет вследствие
накопления ею электрического заряда,
значение тока i падает. Когда ωt = 90°,
наступает полный заряд емкости, значение
i = 0, а разность потенциалов между
электродами конденсатора обретает то
же самое значение, что и напряжение
источника тока. Значение тока i становится
отрицательным тогда, когда он меняет
свое направление. Это происходит тогда,
когда ёмкость начинает разряжаться, то
есть во второй четверти периода. Тогда,
когда u = 0 а ωt = 180°, значение тока i
становится максимальным. В этот же самый
момент ток i начинает течь в обратном
направлении (его принято считать
отрицательным), начинается процесс
перезарядки емкости, а полярность
напряжения u источника также меняется
на противоположную. Когда ωt = 270° значение
тока i становится равным нулю, и поэтому
процесс заряда прекращается. После чего
начинается разряд при первоначальном
(то есть положительном) направлении
тока.
Получается, что ёмкость и заряжается, и разряжается два раза на протяжении одного периода изменения напряжения. Из этого следует, что переменный ток i протекает в цепи непрерывно. Когда ёмкость включается в цепь переменного тока, то ток i опережает напряжение u по фазе на угол, равный 90°. Можно также сказать, что напряжение u отстает по фазе от тока i на угол, равный 90°.
С
опротивление,
которое проявляет ёмкость к переменному
току, носит название емкостного. Единицей
измерения этой величины является Ом, а
обозначается оно Хс. Физическая природа
емкостного сопротивления заключается
в том, что оно обусловлено возникающей
в конденсаторе ЭДС ес. Направление этой
электродвижущей силы противоположно
приложенному напряжению u, поскольку
заряженная ёмкость рассматривается в
качестве источника, у которого между
пластинами действует некоторая ЭДС ес.
Именно она препятствует тому, чтобы под
действием напряжения u происходило
изменение тока, то есть оказывает
определенное сопротивление его
прохождению.
Реактивная мощность ёмкостного характера образуется при подключении конденсаторов, протяжённых кабельных линий, при работе перевозбуждённых синхронных машин и др.
5) Цепь переменного тока с реальной катушкой. Векторная диаграмма. Неразветвленная цепь переменного тока с активным сопротивлением, индуктивностью и емкостью. Треугольники сопротивлений и мощностей. Резонанс напряжений
Р
еальная
катушка имеет не только индуктивность,
но и активное сопротивление, поэтому
при протекании переменного тока в ней
сопровождается не только изменением
энергии в магнитном поле, но и
преобразованием электрической энергии
в другой вид (в тепло). В реальной катушке
имеют место оба процесса, т. е. ее активная
и реактивная мощности отличны от нуля.
Поэтому одна реальная катушка в схеме
замещения должна быть представлена
активным и реактивным элементами.
Из диаграммы видно, что вектор тока I общего напряжения U отражает вектор тока I на угол φ>0, но φ<90°, а по величине равен гипотенузе прямоугольного треугольника, катетами которого являются векторы падений напряжения в активном и индуктивном сопротивлениях UR и UL.
Проекция вектора напряжения U на направление, перпендикулярное вектору тока, называется реактивной составляющей вектора напряжения и обозначается Up. Для катушки Up = UL.
При
токе i =
Imsinωt уравнение
напряжения можно записать на основании
векторной диаграммы в виде U
= Umsin(ωt+φ)
Стороны треугольника напряжений, выраженные в единицах напряжения, разделим на ток I. Получим подобный треугольник сопротивлений (рис б), катетами которого являются активное R = UR/I и индуктивное XL = UL/I, сопротивления, а гипотенузой величина Z = U/I.
Отношение
действующего напряжения к действующему
току данной цепи называется полным
сопротивлением цепи. Стороны треугольника
сопротивлений нельзя считать векторами,
так как сопротивления не являются
функциями времени. Из треугольника
сопротивлений следует:
П
онятие
о полном сопротивлении цепи Z позволяет
выразить связь между действующими
величинами напряжения и тока формулой,
подобной формуле Ома:
Из треугольников сопротивления и напряжения определяются
cosφ = UR/U = R/Z; sinφ = UL/U = XL/Z; tgφ = UL/UR = XL/R
Для неразветвленной цепи переменного тока с активным, емкостным и индуктивным сопротивлениями справедливы следующие соотношения: |
|
|
|
|
|
|
|
|
|
|
|
|
|
В цепях переменного тока с последовательно соединенными катушкой, резистором и конденсатором, в которых реактивные сопротивления равны между собой (XL=XС), наступает резонанс напряжений UL=UC. В этом случае сопротивление становится минимальным и равным активному сопротивлению. Так как реактивные сопротивления зависят от частоты, то резонанс наступит при определенной частоте, которая называется резонансной. |
|
|
|
|
|
Напряжения на индуктивности и емкости при резонансе равны между собой и могут оказаться больше по значению напряжения цепи. Понятие добротности имеет важное практическое значение (например, для антенн). |
Резонанс напряжений (последовательный резонанс) — резонанс, происходящий в последовательном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура. Условие резонанса напряжений: а) сопротивление цепи Z = R минимальное и чисто активное; б) ток цепи совпадает по фазе с напряжением источника и достигает максимального значения; в) напряжение на индуктивной катушке равно напряжению на конденсаторе и каждое в отдельности может во много раз превышать напряжение на зажимах цепи.