Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
mikra_.docx
Скачиваний:
3
Добавлен:
05.03.2025
Размер:
3.61 Mб
Скачать

33. Антибиотики. Общая характеристика. Классификация по химической структуре и по механизму и спектру действия.

СМОТРИ ТЕТРАДЬ

Классификация по спектру действия.Спектром действия антибиотика называют набор микроорганизмов, на которые антибиотик способен оказывать влияние. В зависимости от спектра действия антибиотики могут быть:

  • Антибактериальные антибиотики составляют самую многочисленную группу препаратов. Преобладают в ней антиби­отики широкого спектра действия, оказывающие влияние на представителей всех трех отделов бактерий. К антибиотикам широкого спектра действия относятся аминогликозиды, тетрациклины и др. Антибиотики узкого спектра действия эффектив­ны в отношении небольшого круга бактерий, например полет-миксины действуют на грациликутные, ванкомицин влияет на грамположительные бактерии.

  • В отдельные группы выделяют противотуберкулезные, противолепрозные, противосифилитические препараты.

  • Противогрибковые антибиотики включают значитель­но меньшее число препаратов. Широким спектром действия об­ладает, например, амфотерицин В, эффективный при кандидозах, бластомикозах, аспергиллезах; в то же время нистатин, дей­ствующий на грибы рода Candida, является антибиотиком узко­го спектра действия.

  • Антипротозойные и антивирусные антибиотики на­считывают небольшое число препаратов.

  • Противоопухолевые антибиотики представлены препара­тами, обладающими цитотоксическим действием. Большинство из них применяют при многих видах опухолей, например митоми-цин С.

  • Действие антибиотиков на микроорганизмы связано с их спо­собностью подавлять те или иные биохимические реакции, про­исходящие в микробной клетке.

В зависимости от механизма действия различают пять групп антибиотиков:

1. антибиотики, нарушающие синтез клеточной стенки. К этой группе относятся, например, β-лактамы. Препараты этой груп­пы характеризуются самой высокой избирательностью дей­ствия: они убивают бактерии и не оказывают влияния на клет­ки микроорганизма, так как последние не имеют главного компонента клеточной стенки бактерий — пептидогликана. В связи с этим β -лактамные антибиотики являются наименее токсичными для макроорганизма;

2. антибиотики, нарушающие молекулярную организацию и синтез клеточных мембран. Примерами подоб­ных препаратов являются полимиксины, полиены;

3. антибиотики, нарушающие синтез белка; это наиболее многочисленная группа препаратов. Представителями этой группы являются аминогликозиды, тетрациклины, макроли-ды, левомицетин, вызывающие нарушение синтеза белка на разных уровнях;

4. антибиотики — ингибиторы синтеза нуклеиновых кислот. Например, хинолоны нарушают синтез ДНК, рифампицин — синтез РНК;

5. антибиотики, подавляющие синтез пуринов и аминокислот. К этой группе относятся, например, сульфаниламиды.

34. Антибиотики. Общая характеристика. Механизмы действия важнейших групп антибиотиков на микробную клетку.

Антибиотики, ингибирующие синтез клеточной стенки. Пептидогликан — основа клеточной стенки бактерий — уника­лен и жизненно необходим для прокариот, он есть у большинства бактерий, за исключе­нием не имеющих клеточной стенки. Синтез предшественников пептидогликана начинает­ся в цитоплазме. Затем они транспортируются через ЦПМ, где происходит их объединение в гликопептидные цепи (эту стадию ингибируют гликопептиды). Образование полноценного пептидогликана происходит на внешней поверхности ЦПМ. Этот этап совершается при участии белков-ферментов, которые на­зывают пенициллинсвязывающими белками, так как именно они служат мишенью для пенициллина и других бета-лактамных анти­биотиков. Ингибирование пенициллинсвязывающих белков приводит к накоплению предшественников пептидогликана в бакте­риальной клетке. В результате ненормально большое количество этих предшественниковзапускает в бактериальной клетке систему их уничтожения — аутентические ферменты,которые в норме расщепляют пептидогликан при делении бактериальных клеток. В резуль­тате действия аутолитических ферментов и происходит лизис бактериальной клетки. Поскольку пептидогликана нет в стенках живот­ных клеток, то эти антибиотики обладают очень низкой ток­сичностью для макроорганизма, и их можно применять в вы­соких дозах (мегатерапия).

  • бета-лактамные антибиотики — пенициллины, цефалоспорины, монобактамы и карбопенемы

  • гликопептиды — ванкомицин, клиндамицин

Антибиотики, вызывающие повреждение цитоплазматической мембраны (блокирование фосфолипидных или белковых компонентов, нарушение проницаемости клеточных мембран, изменение мембранного потенциала и т. д.).

ЦПМ есть у всех живых клеток, но у прока­риот (бактерий) и эукариот ее структура различна. У грибов больше общего с клет­ками макроорганизма, хотя есть и различия. Поэтому противогрибковые препараты — антимикотики — более токсичны для организ­ма человека, так что лишь немногие препа­раты из этой группы допустимо принимать внутрь. Число антибиотиков, специфическидействующих на мембраны бактерий, невели­ко. Наиболее известны полимиксины (поли­пептиды), к которым чувствительны только грамотрицательные бактерии. Они лизируют клетки, повреждая фосфолипиды клеточных мембран. Из-за токсичности они применялись лишь для лечения местных процессов и не вво­дились парентерально. В настоящее время на практике не используются. Противогрибковые препараты (антимикотики) повреждают эргостеролы (полиеновые антибиотики) и ингибируют один из ключевых ферментов биосинтеза эргостеролов (имидазолы).

  • полиеновые антибиотики

  • полипептидные антибиотики

Антибиотики, подавляющие белковый синтез. По ряду признаков белоксинтезирующий аппарат прокариот отличается от рибосом эукариотических клеток, что может быть ис­пользовано для достижения селективной ток­сичности действующих на них препаратов. Синтез белка — многоступенчатый процесс, в котором задействовано множество фер­ментов и структурных субъединиц. Известно несколько точек приложения действия раз­личных препаратов: присоединение тРНК с образованием инициального комплекса на 70S рибосоме (аминогликозиды), перемеще­ние тРНК с акцепторного сайта на донорс­кий сайт, присоединение нового аминоацила тРНК к акцепторному сайту (тетрациклины), формирование пептида, катализируемо­го пептидил-трансферазой (хлорамфеникол, линкозамиды), транслокация пептидил тРНК (эритромицин), удлинение пептидной цепи (фузидиевая кислота), терминация и высво­бождение пептидной цепи. Таким образом, аминогликозиды и тетрациклины связывают­ся с 30S-субъединицей, блокируя процесс еще до начала синтеза белка. Аминогликозиды необратимо ингибируют процесс присоеди­нения транспортной РНК, а тетрациклиныобратимо блокируют следующую стадию при­соединения к рибосомам транспортной РНК. Макролиды, хлорамфеникол, линкозамиды соединяются с 50S-субъединицей. Это об­рывает удлинение пептидных цепей. После удаления этих антибиотиков процесс возоб­новляется, т. е. эффект бактериостатичен.

  • аминогликозиды(гентамицин, угнетая белковый синтез в бактериальной клетке, способен нарушать синтез белковой оболочки вирусов и поэтому может обладать противовирусным действием)

  • макролиды

  • тетрациклины

  • хлорамфеникол(левомицетин), нарушающий синтез белка микробной клетки

Антибиотики, ингибирующие синтез нуклеиновых кислот. Нарушение синтеза и функций нуклеиновых кислот достигается тремя способами:

1) ингибирование синтеза предшественников пурин-пиримидиновых оснований (сульфаниламиды, триметоприм)

2) подавление репликации и функций ДНК (хинолоны/фторхинолоны.нитроимидазолы, нитрофураны)

3) ингиби­рование РНК-полимеразы (рифамицины). В большинстве своем в эту группу входят синтетические препараты, из антибиотиков подобным механизмом действия обладаюттолько рифамицины, которые присоединяются к РНК-полимеразе и блокируют синтез м-РНК. Действие фторхинолонов связано, в основ­ном, с инактивацией ДНК-гиразы - фермен­та, обеспечивающего суперспирализацию бактериальной хромосомы. Сульфаниламиды - структурные аналоги парааминобензойнойкислоты - могут конкурентно связываться и ингибировать фермент, который нужен для перевода парааминобензойной кислоты в фолиевую кислоту - предшественник пуриновых и пиримидиновых оснований. Эти основаниянеобходимы для синтеза нуклеиновых кислот.