
шамин с сдо
.pdfa1, a2, a3, . . . ,
n
an
an = a(n)

1
an = 1 + n2 .
12 , 15 , 101 , 171 , . . . .
an = 1 − cos πn,
0, 1, 0, 1, . . . .
|
A |
|
{an} |
ε > 0 |
N = |
N(ε) |
ε |
n > N(ε) |
|an − A| < ε.
lim an = A
n→∞
an → A, |
n → ∞. |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{an} |
|
|
|
|
|
|
an = |
|
n2 |
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
||||||
|
|
|
|
|
|
n2 + 1 |
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lim an = 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n→∞ |
|
ε |
|
|
|
|
|
|
|
|
|
|
N = N(ε) |
|
|
|
n > N |
|||||
|
|
|
|
|
|
|
|
2 |
|
|
− 1 < ε. |
|
|
|
|
||||||
|
|
|
|
n2n+ 1 |
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
n2 |
|
1 |
|
= |
|
n2 |
− n2 − 1 |
|
= |
|
1 |
. |
||||||||
n2 |
+ 1 |
− |
|
|
|
|
|
|
n2 + 1 |
|
|
n2 |
+ 1 |
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
< ε. |
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
n2 + 1 |
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
n2 > ε−1 − 1. |
|
|
|
|
|
|
|||||||||
|
|
|
N(ε) |
√ε−1 − 1, ε < 1. |
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
N(ε) = |
|
|
1, |
|
|
|
|
|
|
ε ≥ 1, |
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
an = (−1)n
A |
A ≥ 0 |
n |
| − 1 − A| = A + 1 ≥ 1,
A ≥ 0 |
|
ε < 1 |
A < 0 |
|1 − A| = |A| + 1 > 1, |
|
A < 0 |
|
ε < 1 |
|
a b
̺(a, b)
̺(a, b) = |a − b|.
a |
b |
b |
a |
|
̺(a, b) ≤ ̺(a, c) + ̺(c, b) |
|
|
a b |
c |
|
|
|
x0 |
|
ε > 0 |
U(x0, ε) = (x0 − ε, x0 + ε)
ε |
x0 |
ε |
x0 |
εx0
ε
A
{an} |
ε |
ε
|
an |
a |
b |
|
a < b. |
ε = b−a |
ε > 0 |
2 |
|
ε |
U(a, ε) U(b, ε) |
N = N(ε) |
n > N(ε) |
|
an U(a, ε) |

an U(b, ε).
an bn
cn
an ≤ bn ≤ cn.
lim an = lim cn = d, |
|
n→∞ |
n→∞ |
bn |
lim bn = d |
|
n→∞ |
|
ε > 0 |
N = N(ε) |
n > N(ε) |
d − ε < an < d + ε
d − ε < cn < d + ε
d − ε < an ≤ bn ≤ cn < d + ε.
n > N(ε)
d − ε < bn < d + ε,

ε > 0
lim cn = d.
n→∞
bn = |
sin n2 |
|
|
|
|||||
|
|
. |
|
|
|
||||
n |
|
|
|
||||||
|
|
1 |
|
|
|
1 |
|
||
an = − |
|
, cn = |
|
|
. |
||||
n |
n |
||||||||
lim an = |
lim cn = 0. |
||||||||
n→∞ |
|
|
n→∞ |
|
|
|
|||
|bn| = |
|
|
sin n2 |
≤ |
1 |
, |
|||
|
|
n |
|
n |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
an ≤ bn ≤ cn. |
|
|
|
||||||
lim |
|
sin n2 |
= 0. |
|
|||||
|
|
|
n |
|
|||||
n→∞ |
|
|
|
|
|
|
|
{an}
M
an ≤ M
n
{an}
M
M ≤ an
n
{an}
n |
M |
|an| ≤ M.
{an} |
a |
ε |
|
ε = 1 |
N |
|
|an − a| < 1, |

n > N
M = max{|a| + 1, |a1|, |a2|, . . . , |aN |}.
|an| ≤ M,
{an}
n
an ≤ an+1.
{an}
n an ≥ an+1.
{an}
M = sup{an}.

an → M |
n → ∞ |
ε > 0 |
N = N(ε) |
|
aN(ε) > M − ε. |
n > N(ε)
an > M − ε
n > N(ε) |
an |
an ≤ M.
|an − M| < ε
n > N(ε) |
{an} |
M
{an}
1 an = 1 − n .
lim an = 1
n→∞
{−aN}