
шамин с сдо
.pdf
15 |
|
|
|
|
10 |
|
|
|
|
5 |
|
|
|
|
f(x) |
|
|
|
|
0 |
|
|
|
|
−5 |
|
|
|
|
−10 |
|
|
|
|
−4 |
−2 |
0 |
2 |
4 |
|
|
x |
|
|
|
|
|
f(x) |
|
N
RN
x = (x1, x2, . . . , xN ),
xi
x
x, y RN
|
xi = yi, i = 1, . . . , N. |
x RN |
λ RN |
|
λ · x = (λx1, . . . , λxN ). |

x, y RN
x ± y = (x1 ± y1, . . . , xN ± yN ).
x + y = y + x, (x + y) + z = x + (y + z), λ · (x + y) = λ · x + λ · y.
(0, 0, . . . , 0) 0
x, y RN
p
̺(x, y) = (x1 − y1)2 + · · · + (xN − yN )2.
̺(x, y) ≥ 0, ̺(x, y) = 0 x = y;
̺(x, y) = ̺(y, x);
̺(x, y) ≤ ̺(x, z) + ̺(z, y)
RN |
RN |
x0 |
r > 0 |
|
|
|
Br(x0) = {x RN : ̺(x0, x) < r}. |
|

N = 1 x0 = 5 r = 2
Br(x0) = (3, 7).
N = 2 x0 = 0 r = 1
q
Br(x0) = (x1, x2) : x21 + x22 < 1
|
A RN |
|
|
||
|
x0 RN |
|
ε > 0 |
||
Bε(x0) RN . |
|
|
|||
|
|
|
R2 |
||
|
|
|
|
x′ |
|
B1(0) |
|
x = (x1′ , . . . , xN′ ) |
|||
r = ̺(x′, 0). |
|
|
|||
r < 1 |
|
ε = |
1−r |
Br(x′) |
|
|
|
|
2 |
|
|
B1(0) |
|
|
x′′ |
||
Br(x′) |
|
|
|
|
|
̺(x′′, 0) < ε + r < |
1 − r |
+ r < |
r + 1 |
< 1. |
|
2 |
2 |
||||
|
|
|
x0
U(x0) |
x0 |
x0 U(x0).
M RN
R > 0
M BR(0).
Q Rn
RN
RN
RN
x1, x2, x3, . . . .
|
|
|
|
{xn} RN |
x∞ |
|
|
|
ε > 0 |
N = N(ε) |
|
|
|
ε |
̺(xn, x∞) < ε, |
||||
n > N(ε) |
|
|
|
|
xn → x∞, n → ∞ |
||||
lim x |
n |
= x . |
||
n |
→∞ |
|
∞ |
|
|
|
|
|
|
x∞ RN |
|
|||
{xn} |
|
|
|
U(x0) |
N = N(U(x0)) |
n > N(U(x0)) |
xn U(x0).
N = 1
R1
N ≥ 2
±∞

R2
|
|
xn = (x1n, x2n), |
|||||
|
x1n = |
|
cos n |
, x2n |
= |
sin n |
. |
|
|
|
|
||||
|
|
|
n |
|
n |
||
|
xn → 0 |
|
n → ∞ |
|
|
|
|
ε > 0 |
N(ε) > 1 |
|
|
|
|
n > N(ε) |
|
|
ε |
|
|
|
|
|
|
s
̺(xn, 0) =
RN
xn → x0 n → ∞
A
cos2 n |
|
sin2 n |
1 |
|
|
|
+ |
|
= |
|
< ε. |
n2 |
n2 |
n |
A RN |
x0 |
xn A,
x0
B1(0) R2
x0 = |
√ |
, √ |
|
1 |
1 |
22

xn = |
√2 − |
1 + n |
, √2 − |
1 + n |
|||
|
1 |
|
1 |
1 |
|
1 |
|
B1(0) |
|
x0 |
|
|
|||
|
x0 |
|
|
|
|
B1(0) |
Q
π
{xn}
xn → π, n → ∞.
A RN
BR(x0)
BR(x0) = {x RN : ̺(x, x0) ≤ R},
x′ / BR(x0)
x′
R
R′ = ̺(x′, x0).
B |
R(x0) |
R′ > |
|
Bε(x′) |
ε < R′ − R |
BR(x0) ∩ Bε(x′) = .

{xn}
B |
R(x0) |
xn → x′ |
A RN
A
A
R
Q
A = {x RN : 0 < ̺(x, 0) < 1}
B1(0)
(0, 1]
RN
RN
|
|
A |
∂A |
x′ ∂A |
r > 0 |
Br(x′) |
A |
|
A |
|
|
BR(x0)
SR(x0) = {x RN : ̺(x, x0) = R}.

SR(x0) |
R |
x0
R = 1 x0 = 0
x2
x′
Br(x′)
x1
B1(0)
B1(0)
D RN
D RN
f : D → R.