
шамин с сдо
.pdff(x)
f′(x)
f(x) > 0 |
(a, b) |
f(x) |
|
f(x) ≥ 0 |
(a, b) |
f(x) |
|
f(x) < 0 |
(a, b) |
f(x) |
|
f(x) ≤ 0 |
(a, b) |
f(x) |
|

|
f(x) = |
x3 |
3x3 |
|
1 |
|
||
|
3 − |
2 + 2x − |
2 . |
|
||||
|
|
f′(x) = x2 − 3x + 2. |
|
|
||||
|
f′(x) = 0 |
|
|
x1 = 1 x2 = 2 |
||||
2.0 |
|
|
|
|
|
|
|
|
1.5 |
|
|
|
|
|
|
|
|
1.0 |
|
|
|
|
|
|
|
|
f(x) |
|
|
|
|
|
|
|
|
0.5 |
|
|
|
|
|
|
|
|
0.0 |
|
|
|
|
|
|
|
|
−0.5 |
|
|
|
|
|
|
|
|
0.0 |
0.5 |
1.0 |
|
1.5 |
2.0 |
2.5 |
3.0 |
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
f(x) |
|
f′(x) |
|
( |
, 1) |
|
|
|
f′(x) > 0 |
|
|
|
−∞ |
|
|
|
|
|
|
|
|
|
f(x) |
|
|
|
|
|
(1, 2) |
|
f′(x) < 0 |
|
|
|
|
|
|
f(x) |
|
|
|
(2, |
∞ |
) |
|
|
f′(x) > 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f(x) |
|
|
f(x)
f′(x) = 0, (a, b).
f(x) =
x3 |
[−1, 1] |
c = 0 |
f′(x) = 3x2 = 0
x = 0
f(x)
U(ε, c) |
c |

f(x)
f′(x) > 0, x < c, x U(ε, c)
f′(x) < 0, x > c, x U(ε, c),
c
f′(x) < 0, x < c, x U(ε, c)
f′(x) > 0, x > c, x |
|
U(ε, c), |
|||
|
|
|
|
|
|
c |
|
|
|
|
|
x U(ε, c) |
|
x 6= c |
|
|
|
f(x) |
|
|
|
|
|
f(c) |
− |
f(x) = f′(ξ)(c |
− |
x), |
|
|
|
|
|
||
ξ |
|
c x |
|
|
x < c |
f′(ξ) |
|
x > c |
|
|
|
f(c) − f(x) > 0.
c

|
f(x) |
|
c |
f(x) |
|
|
f′′(c) < 0 |
|
|
f′′(c) > 0. |
|
|
c |
f′′(c) < 0 |
|
f′(x) |
c |
|
c |
f′(c) = 0 |
|
|
c |
f′(x) |
c |
|
|
c |
f(x) |
|
c |
|
|
f′′(x) > 0 |
|
f(x) = cos x
x = 0
f′′(x)
f′′(x) = (cos x)′′ = − cos x,
f′′(0) = −1,
f(x) = x(1 − x)
f′(x) = 1 − 2x,
f′′(x) = −2.
f′(x) = 1 |
− |
2x = 0. |
|
|
||||
|
|
|
|
|
|
|
|
|
x0 |
= 1 |
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
x0 |
|
|
|
|
|
|
|
|
f(x0) = 2 1 − 2 |
= |
4 . |
||||||
|
1 |
|
|
1 |
|
|
1 |
|
f(x)
M(x, f(x))
f(x)
(a, b)
(a, b)
f(x)
(a, b)
(a, b)
f(x)
(a, b)
(a, b)
f(x)
f′′(x0) < 0 f(x0)
(a, b)
y = f(x)

f′′(x) ≥
0 |
(a, b) |
|
|
|
|
|
|
|
(a, b) |
|
c |
|
|
|
|
|
|
|
|
|
y |
− |
f(c) = f′(c)(x |
− |
c). |
|
|||
|
|
|
|
|
|
|
|||
|
|
|
|
|
y = L(x) |
|
|
|
|
|
|
|
|
|
f(x) L(x) |
|
|||
f(x) |
c |
|
|
|
n = 1 |
|
|
|
|
|
f(x) = f(c) + |
|
f′(c) |
(x − c) + |
f′′(ξ) |
(x − c)2, |
|||
|
1! |
|
2! |
ξ
cx
f(x) − L(x) = f′′(ξ) (x − c)2 ≥ 0. 2
y = f(x)
|
|
y = ln x |
|
|
|
|
(0, ∞) |
1 |
|
|
|
f′′(x) = − |
|
< 0, x (0, ∞). |
|
x2 |
|
||
ln x |
|
|
|
(c, f(c)) |
y = f(x) |
c |
c |

y = f(x)
c
f′′(c) = 0,
f′′(x)
c |
c |
f(x) = x3 |
|
f′′(x) = 6x |
|
x = 0 |
x < 0 x > 0 |
x = 0 |
|
y =
f(x) x → +∞
y = kx + b,
f(x)
f(x) = kx + b + α(x),
lim α(x) = 0
x→+∞

y = f(x) x → +∞ |
x = a |
lim f(x)
x→a+0
lim f(x)
|
|
|
|
|
x→a−0 |
|
|
|
|
|
|
|
|
|
+∞ |
−∞ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
y = f(x) |
|
x → +∞ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lim |
f(x) |
= k |
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
x→+∞ |
x |
|
|
|
|
|
|
|||
|
|
x |
lim [f(x) |
− |
kx] = b. |
|
|
|||||||
|
|
|
+ |
|
|
|
|
|
|
|
|
|||
|
|
|
→ ∞ |
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
y = f(x) |
x → |
|
+∞ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lim |
f(x) |
= lim |
|
kx + b + α(x) |
= k, |
|
|||||||
|
x |
|
|
|
|
x |
|
|
||||||
x→+∞ |
|
|
x→+∞ |
|
|
|
|
|
|
|||||
x |
lim [f(x) |
− |
kx] = |
|
lim [b |
− |
α(x)] = b. |
|
||||||
+ |
|
|
|
x |
|
|
+ |
|
|
|
||||
|
→ ∞ |
|
|
|
|
|
→ ∞ |
|
|
|
|
α(x) = f(x) − kx − b
x→ +∞ x → −∞
y = |
3x3 + 2x2 + 1 |
. |
|
|||||
|
|
|
||||||
|
|
|
x2 + 1 |
|
|
|
|
|
lim |
|
3x3 + 2x2 + 1 |
= 3 = k. |
|||||
|
x(x2 + 1) |
|||||||
x→±∞ |
|
|
|
|
|
|||
x→±∞ |
3x3 + 2x2 + 1 |
− |
|
|
|
|||
|
|
x2 + 1 |
|
|
||||
lim |
|
|
|
|
|
3x |
= 2. |
y = f(x)
y = L(x) = 3x + 2.
y = ln x
x = 0
lim ln x = −∞.
x→+0