
численные методыА.Б. САМОХИН, В.В. ЧЕРДЫНЦЕВ, А.А. ВОРОНЦОВ
.pdf71
ɇɚ ɪɢɫ ɩɨɤɚɡɚɧ ɩɨɥɭɩɟɪɢɨɞ ɤɨɥɟɛɚɧɢɣ ɫɬɪɭɧɵ ɪɚɫɫɱɢ ɬɚɧɧɵɣ ɩɨ ɮɨɪɦɭɥɚɦ ɩɪɢ ɫɥɟɞɭɸɳɢɯ ɢɫɯɨɞɧɵɯ ɞɚɧɧɵɯ ɝɪɚɧɢɱɧɵɯ ɢ ɧɚɱɚɥɶɧɵɯ ɭɫɥɨɜɢɹɯ X 1, T 1, c 1, L R 0 , f (x) sin(Sx) , g(x) 0 ɒɚɝɢ ɫɟɬɤɢ ɩɨ ɩɪɨɫɬɪɚɧɫɬ ɜɟɧɧɨɣ ɤɨɨɪɞɢɧɚɬɟ ɢ ɩɨ ɜɪɟɦɟɧɢ 'x 0.05, 't 0.05.
ɑɢɫɥɨ ɲɚɝɨɜ ɩɨ x ɢ ɩɨ t ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ N 20, M 20.
7.3. ɉɚɪɚɛɨɥɢɱɟɫɤɢɟ ɭɪɚɜɧɟɧɢɹ
Ⱦɚɧɧɵɣ ɬɢɩ ɭɪɚɜɧɟɧɢɣ ɪɚɫɫɦɨɬɪɢɦ ɧɚ ɩɪɢɦɟɪɟ ɨɞɧɨɦɟɪɧɨɝɨ ɧɟɫɬɚɰɢɨɧɚɪɧɨɝɨ ɭɪɚɜɧɟɧɢɹ ɬɟɩɥɨɩɪɨɜɨɞɧɨɫɬɢ ɫ ɝɪɚɧɢɱ ɧɵɦɢ ɢ ɧɚɱɚɥɶɧɵɦɢ ɭɫɥɨɜɢɹɦɢ ɨɩɢɫɵɜɚɸɳɟɝɨ ɩɪɨɰɟɫɫ ɭɫɬɚɧɨɜɥɟɧɢɹ ɬɟɦɩɟɪɚɬɭɪɵ ɜ ɢɡɨɥɢɪɨɜɚɧɧɨɦ ɫɬɟɪɠɧɟ ɢɦɟɸɳɟɦ ɧɚ ɤɨɧɰɚɯ ɩɨɫɬɨɹɧɧɭɸ ɬɟɦɩɟɪɚɬɭɪɭ L ɢ R ɢ ɡɚɞɚɧɧɨɟ ɧɚɱɚɥɶɧɨɟ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɬɟɦɩɟɪɚɬɭɪɵ ɜɞɨɥɶ ɫɬɟɪɠɧɹ f (x) :
u |
(x,t) c2u |
xx |
(x,t) , 0 x X , 0 d t T ; |
(7.3.1) |
||
t |
|
|
|
|
|
|
u(0,t) |
ul (t) { L , |
|
u( X ,t) |
ur (t) { R , t [0,T ]; |
(7.3.2) |
|
|
u(x,0) |
f (x), |
x [0, X ]. |
(7.3.3) |
Ⱦɥɹ ɚɩɩɪɨɤɫɢɦɚɰɢɢ ɭɪɚɜɧɟɧɢɹ ɢɫɩɨɥɶɡɭɟɦ ɤɨɧɟɱɧɵɟ ɪɚɡɧɨɫɬɢ ɢ
|
u |
|
|
ui, j |
|
u |
|
2ui, j |
u |
|
|
|
|
i 1, j |
|
|
c2 |
i, j 1 |
|
i, j 1 |
. |
||||
|
|
't |
|
('x)2 |
|
|||||||
|
|
|
|
|
|
|
|
|||||
Ɉɛɨɡɧɚɱɢɦ q |
c |
2 |
't |
ɉɨɫɥɟ ɩɪɟɨɛɪɚɡɨɜɚɧɢɣ ɩɨɥɭɱɚɟɦ ɹɜ |
||||||||
|
('x)2 |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
ɧɭɸ ɱɟɬɵɪɟɯɬɨɱɟɱɧɭɸ ɫɟɬɨɱɧɭɸ ɫɯɟɦɭ ɜ ɤɨɬɨɪɨɣ ɡɧɚɱɟɧɢɟ ɮɭɧɤɰɢɢ ɧɚ (i 1)-ɦ ɫɥɨɟ ɩɨ ɜɪɟɦɟɧɢ ɜɵɪɚɠɚɟɬɫɹ ɱɟɪɟɡ ɬɪɢ ɫɨ ɫɟɞɧɢɯ ɡɧɚɱɟɧɢɹ ɧɚ ɧɢɠɧɟɦ i -ɦ ɫɥɨɟ
ui 1, j (1 2q)ui, j q(ui, j 1 ui, j 1) . |
(7.3.4) |

72
Ɏɨɪɦɭɥɚ ɩɨɡɜɨɥɹɟɬ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨ ɧɚɣɬɢ ɜɫɟ ɡɧɚɱɟ ɧɢɹ ɫɟɬɨɱɧɨɣ ɮɭɧɤɰɢɢ ɧɚɱɢɧɚɹ ɫɨ ɫɥɨɹ i 0 ɧɚ ɤɨɬɨɪɨɦ ɡɚɞɚɧɵ ɧɚɱɚɥɶɧɵɟ ɭɫɥɨɜɢɹ Ɉɞɧɚɤɨ ɜɵɱɢɫɥɟɧɢɹ ɩɨ ɷɬɨɣ ɮɨɪɦɭɥɟ ɭɫɬɨɣɱɢɜɵ ɬɨɥɶɤɨ ɜ ɬɨɦ ɫɥɭɱɚɟ ɟɫɥɢ ɜɵɩɨɥɧɹɟɬɫɹ ɭɫɥɨɜɢɟ 0 d q d 0.5 ɗɬɨ ɧɚɤɥɚɞɵɜɚɟɬ ɠɟɫɬɤɢɟ ɨɝɪɚɧɢɱɟɧɢɹ ɧɚ ɲɚɝ ɫɟɬɤɢ ɩɨ ɜɪɟɦɟɧɢ ɨɛɹɡɵɜɚɹ ɜɵɛɢɪɚɬɶ ɷɬɨɬ ɲɚɝ ɧɚɦɧɨɝɨ ɦɟɧɶɲɢɦ ɱɟɦ ɲɚɝ ɩɨ ɩɪɨɫɬɪɚɧɫɬɜɟɧɧɨɣ ɤɨɨɪɞɢɧɚɬɟ ɱɬɨ ɫɭɳɟɫɬɜɟɧɧɨ ɭɜɟɥɢɱɢ ɜɚɟɬ ɜɪɟɦɹ ɪɚɫɱɟɬɚ ɢ ɨɝɪɚɧɢɱɢɜɚɟɬ ɩɪɢɦɟɧɢɦɨɫɬɶ ɹɜɧɨɣ ɫɯɟɦɵ
Ⱦɥɹ ɚɩɩɪɨɤɫɢɦɚɰɢɢ ɭɪɚɜɧɟɧɢɹ ɦɨɠɟɬ ɛɵɬɶ ɢɫɩɨɥɶɡɨ ɜɚɧɚ ɥɟɜɚɹ ɤɨɧɟɱɧɚɹ ɪɚɡɧɨɫɬɶ :
|
ui, j u |
|
|
|
|
u |
2ui, j |
u |
|
|
|
|
|||||
|
|
|
i 1, j |
|
c2 |
i, j 1 |
|
|
i, j 1 |
, |
|
|
|||||
|
|
't |
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
('x)2 |
|
|
|
|
|
|
|
|||
ɱɬɨ ɩɪɢɜɨɞɢɬ ɤ ɧɟɹɜɧɨɣ ɱɟɬɵɪɺɯɬɨɱɟɱɧɨɣ ɪɚɡɧɨɫɬɧɨɣ ɫɯɟɦɟ : |
|||||||||||||||||
u |
|
§ |
2 |
1 |
·u |
u |
|
|
1 |
u |
|
|
, |
(7.3.5) |
|||
|
|
|
|||||||||||||||
|
i, j |
¨ |
|
|
q |
¸ i, j |
i, j |
|
|
|
|
|
|
||||
|
1 |
© |
|
|
¹ |
|
1 |
|
q i 1, j |
|
|
ɤɨɬɨɪɚɹ ɭɫɬɨɣɱɢɜɚ ɩɪɢ ɥɸɛɵɯ ɫɨɨɬɧɨɲɟɧɢɹɯ ɲɚɝɨɜ ɫɟɬɤɢ ɂɡ ɫɥɟɞɭɟɬ ɱɬɨ ɞɥɹ ɤɚɠɞɨɝɨ ɫɥɨɹ i ɩɨ ɜɪɟɦɟɧɢ ɡɧɚɱɟ
ɧɢɹ ɧɟɢɡɜɟɫɬɧɨɣ ɫɟɬɨɱɧɨɣ ɮɭɧɤɰɢɢ ui, j , j 1, 2,..., N 1 ɫɜɹɡɚɧɵ ɋɅȺɍ ɫ ɬɪɟɯɞɢɚɝɨɧɚɥɶɧɨɣ ɦɚɬɪɢɰɟɣ ȼ ɷɬɨɣ ɦɚɬɪɢɰɟ ɧɚ ɝɥɚɜɧɨɣ ɞɢɚɝɨɧɚɥɢ ɧɚɯɨɞɢɬɫɹ ɡɧɚɱɟɧɢɟ (2 1q ) ɚ ɧɚ ɞɜɭɯ ɫɨɫɟɞɧɢɯ ɞɢɚ
ɝɨɧɚɥɹɯ -1 Ɂɧɚɱɟɧɢɟ ɧɚ ɝɥɚɜɧɨɣ ɞɢɚɝɨɧɚɥɢ ɛɥɢɡɤɨ ɤ 2 ɬ ɤ ɡɧɚ ɱɟɧɢɟ q ɤɚɤ ɩɪɚɜɢɥɨ !!1 ȼɟɤɬɨɪ ɜ ɩɪɚɜɨɣ ɱɚɫɬɢ ɩɪɢ ɩɨɫɬɨɹɧɧɨɦ ɡɧɚɱɟɧɢɢ i const ɢɡɜɟɫɬɟɧ ɢɡ ɜɵɱɢɫɥɟɧɢɣ ɧɚ ɩɪɟ ɞɵɞɭɳɟɦ ɲɚɝɟ ɩɨ ɜɪɟɦɟɧɢ ɢ ɜɯɨɞɢɬ ɜ ɩɪɚɜɭɸ ɱɚɫɬɶ ɋɅȺɍ
ɉɨɫɥɟɞɨɜɚɬɟɥɶɧɨ ɪɟɲɚɹ ɋɅȺɍ ɧɚɱɢɧɚɹ ɫɨ ɫɥɨɹ i 1, ɦɨɠɧɨ ɜɵɱɢɫɥɢɬɶ ɫɟɬɨɱɧɭɸ ɮɭɧɤɰɢɸ ɜɨ ɜɫɟɣ ɨɛɥɚɫɬɢ ɪɟɲɟɧɢɹ ɋɢɫɬɟɦɚ ɦɨɠɟɬ ɛɵɬɶ ɪɟɲɟɧɚ ɤɚɤ ɫɬɚɧɞɚɪɬɧɵɦ ɦɟɬɨɞɨɦ

|
|
|
|
|
73 |
|
|
ɬɚɤ ɤɚɤ ɩɨɪɹɞɨɤ ɫɢɫɬɟɦɵ ɧɟ ɫɥɢɲɤɨɦ ɜɟɥɢɤ: N 1 ɬɚɤ ɢ ɫɩɟɰɢ |
|||||||
ɚɥɶɧɵɦɢ ɦɟɬɨɞɚɦɢ ɩɪɢɦɟɧɹɟɦɵɦɢ ɞɥɹ ɪɟɲɟɧɢɹ ɫɢɫɬɟɦ ɫ ɬɪɟɯ |
|||||||
ɞɢɚɝɨɧɚɥɶɧɵɦɢ ɦɚɬɪɢɰɚɦɢ ɧɚɩɪɢɦɟɪ ɦɟɬɨɞɨɦ ɩɪɨɝɨɧɤɢ > @ |
|||||||
|
|
1 |
|
|
|
|
|
u1 |
j |
0.8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
u2 j |
|
|
|
|
|
|
|
u3 j |
|
|
|
|
|
|
|
u4 |
j |
0.6 |
|
|
|
|
|
u6 |
j |
|
|
|
|
|
|
u8 |
j |
0.4 |
|
|
|
|
|
u10 j |
|
|
|
|
|
||
|
|
|
|
|
|
||
u11 j |
|
|
|
|
|
|
|
|
|
0.2 |
|
|
|
|
|
|
|
00 |
20 |
40 |
60 |
80 |
100 |
|
|
|
|
|
j |
|
|
|
|
|
|
|
Ɋɢɫ 7.2 |
|
|
ɇɚ ɪɢɫ 7. ɩɪɟɞɫɬɚɜɥɟɧ ɪɚɫɱɟɬ ɭɫɬɚɧɨɜɥɟɧɢɹ ɬɟɦɩɟɪɚɬɭɪɵ ɜ ɫɬɟɪɠɧɟ ɩɪɨɜɟɞɟɧɧɵɣ ɩɨ ɧɟɹɜɧɨɣ ɫɯɟɦɟ ɩɪɢ ɫɥɟɞɭɸɳɢɯ
ɧɚɱɚɥɶɧɵɯ ɢ ɝɪɚɧɢɱɧɵɯ |
ɭɫɥɨɜɢɹɯ X |
1, T 1; u(0,t) |
0 , |
|
u( X ,t) 0 , t [0,T ]; u(x,0) |
f (x) |
sin(Sx) , |
x [0, X ]. ɒɚɝɢ ɫɟɬ |
|
ɤɢ ɩɨ ɜɪɟɦɟɧɢ ɢ ɩɨ ɩɪɨɫɬɪɚɧɫɬɜɟɧɧɨɣ ɤɨɨɪɞɢɧɚɬɟ 't |
0.1, |
|||
'x 0.01 ɉɪɢ ɞɚɧɧɨɦ ɡɧɚɱɟɧɢɢ q |
1000 ɪɚɫɱɟɬɵ ɩɨ ɹɜɧɨɣ ɫɯɟɦɟ |
ɛɵɥɢ ɛɵ ɧɟɜɨɡɦɨɠɧɵ ɢɡ-ɡɚ ɛɨɥɶɲɨɣ ɧɟɭɫɬɨɣɱɢɜɨɫɬɢ ɑɢɫ ɥɨ ɲɚɝɨɜ ɩɨ t ɢ ɩɨ x ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ M = 10, N = 100.
74
7.4. ɍɪɚɜɧɟɧɢɹ ɷɥɥɢɩɬɢɱɟɫɤɨɝɨ ɬɢɩɚ
Ⱦɜɭɦɟɪɧɵɟ ɤɪɚɟɜɵɟ ɡɚɞɚɱɢ ɞɥɹ ɭɪɚɜɧɟɧɢɣ ɞɚɧɧɨɝɨ ɬɢɩɚ ɪɚɫɫɦɨɬɪɢɦ ɧɚ ɩɪɢɦɟɪɟ ɭɪɚɜɧɟɧɢɣ Ʌɚɩɥɚɫɚ ɉɭɚɫɫɨɧɚ ɢ Ƚɟɥɶɦ ɝɨɥɶɰɚ
Ɉɛɨɡɧɚɱɢɦ ɤɚɤ ɨɛɵɱɧɨ ɨɩɟɪɚɬɨɪ Ʌɚɩɥɚɫɚ
'u uxx uyy , x, y S .
Ɍɨɝɞɚ ɭɤɚɡɚɧɧɵɟ ɭɪɚɜɧɟɧɢɹ ɢɦɟɸɬ ɜɢɞ |
||||
1) |
ɭɪɚɜɧɟɧɢɟ Ʌɚɩɥɚɫɚ: |
'u |
0 |
, |
2) |
ɭɪɚɜɧɟɧɢɟ ɉɭɚɫɫɨɧɚ: |
'u |
f (x, y) . |
|
3) |
ɭɪɚɜɧɟɧɢɟ Ƚɟɥɶɦɝɨɥɶɰɚ: 'u g(x, y)u f (x, y) . |
Ƚɪɚɧɢɱɧɵɟ |
ɭɫɥɨɜɢɹ |
ɡɚɞɚɸɬɫɹ |
ɧɚ ɝɪɚɧɢɰɟ ɨɛɥɚɫɬɢ S : |
|
uȽ G(x, y) , |
ɜ |
ɱɚɫɬɧɨɫɬɢ ɧɚ |
ɝɪɚɧɢɰɟ ɩɪɹɦɨɭɝɨɥɶɧɢɤɚ |
|
x [0, X ], y [o,Y ]: |
u(x,0) |
u0 (x) , u(x,Y ) uY (x) , u(0, y) u0 ( y), |
||
u( X , y) uX ( y) . |
|
|
|
Ɋɚɡɧɨɫɬɧɚɹ ɫɯɟɦɚ ɭɪɚɜɧɟɧɢɣ
Ɋɚɡɧɨɫɬɧɭɸ ɫɯɟɦɭ ɪɚɫɫɦɨɬɪɢɦ ɧɚ ɩɪɢɦɟɪɟ ɭɪɚɜɧɟɧɢɹ ɉɭɚɫ ɫɨɧɚ ɜ ɩɪɹɦɨɭɝɨɥɶɧɢɤɟ ɢɫɩɨɥɶɡɭɹ ɞɥɹ ɚɩɩɪɨɤɫɢɦɚɰɢɢ ɜɬɨɪɨɣ ɩɪɨɢɡɜɨɞɧɨɣ ɤɨɧɟɱɧɵɟ ɪɚɡɧɨɫɬɢ ɜɬɨɪɨɝɨ ɩɨɪɹɞɤɚ ɬɨɱɧɨɫɬɢ
ȼɜɨɞɹ ɫɟɬɤɭ yi |
i 'y, |
x j |
j 'x, 0 d i d M ,0 d j d N ɩɨ |
|||||||||||
ɥɭɱɚɟɦ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
u |
2ui, j |
u |
|
|
u |
|
2ui, j |
u |
|
|
|||
|
i, j |
1 |
|
|
i, j |
1 |
|
i |
1, j |
|
|
i |
1, j |
fi, j , |
|
|
|
('x) |
2 |
|
|
|
|
('y) |
2 |
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
||
ɢɥɢ ɜɜɟɞɹ ɨɛɨɡɧɚɱɟɧɢɟ q |
('x)2 / ('y)2 ɩɨɥɭɱɚɟɦ ɩɹɬɢɬɨɱɟɱ |
ɧɭɸ ɪɚɡɧɨɫɬɧɭɸ ɫɯɟɦɭ ɞɥɹ ɜɧɭɬɪɟɧɧɢɯ ɭɡɥɨɜ ɩɪɹɦɨɭɝɨɥɶɧɢɤɚ:
u |
|
2(1 q)u |
u |
|
q(u |
|
u |
|
) ('x)2 f |
i, j |
. (7.4.1) |
|
i, j |
|
|
|
|
|
|||||
i, j 1 |
|
i, j 1 |
i 1, j |
i 1, j |
|
|
|
Ⱦɚɧɧɚɹ ɧɟɹɜɧɚɹ ɫɯɟɦɚ ɨɯɜɚɬɵɜɚɟɬ ɜɫɟ ɜɧɭɬɪɟɧɧɢɟ ɬɨɱɤɢ ɨɛ ɥɚɫɬɢ 1 d i d M 1,1 d j d N 1 ɢɯ ɤɨɥɢɱɟɫɬɜɨ n (M 1)(N 1) .
75
Ɍɚɤɨɜɨ ɠɟ ɱɢɫɥɨ ɭɪɚɜɧɟɧɢɣ ɢ ɧɟɢɡɜɟɫɬɧɵɯ ɜ ɋɅȺɍ ɩɨɫɬɪɨɟɧɧɨɣ ɧɚ ɨɫɧɨɜɟ
ɉɭɫɬɶ ɞɥɹ ɩɪɨɫɬɨɬɵ f (x, y) 1 ɞɥɹ |
ɜɫɟɯ |
x, y S ɬ ɟ |
|
fi, j { 1 ɞɥɹ ɜɫɟɯ ɜɧɭɬɪɟɧɧɢɯ ɬɨɱɟɤ |
1 d i d M 1 , |
1 d j d N 1 ɚ |
|
ɝɪɚɧɢɱɧɵɟ ɭɫɥɨɜɢɹ ɬɚɤɨɜɵ ɜɧɢɡɭ |
u(x,0) |
0 ɫɥɟɜɚ ɢ ɫɩɪɚɜɚ |
u(0, y) 0 , u( X , y) 0 ɢ ɬɨɥɶɤɨ ɧɚɜɟɪɯɭ ɡɚɞɚɧɚ ɨɬɥɢɱɧɚɹ ɨɬ ɧɭɥɹ ɮɭɧɤɰɢɹ u(x,Y ) sin(Sx) Ɂɚɞɚɞɢɦ 'x 'y 0.2 , X Y 1 Ɍɨ ɝɞɚ M 5, N 5 ɚ ɱɢɫɥɨ ɜɧɭɬɪɟɧɧɢɯ ɬɨɱɟɤ ɢ ɭɪɚɜɧɟɧɢɣ n 16 . Ɇɚɬɪɢɰɚ ɋɅȺɍ ɞɥɹ ɞɚɧɧɨɣ ɡɚɞɚɱɢ ɡɚɞɚɟɬɫɹ ɩɨ ɫɥɟɞɭɸɳɟɦɭ ɡɚ ɤɨɧɭ ɧɚ ɹɡɵɤɟ ɩɚɤɟɬɚ Mathcad):
A : matrix(n, n, a)
a(i j) |
|
|
|
2 (1 |
q) if |
i |
|
j |
|||||||
|
|
|
|||||||||||||
|
|||||||||||||||
|
|||||||||||||||
|
|
|
|
1 |
if |
j |
|
|
|
|
i 1 |
mod( j N 1) z 0 |
|||
|
|
|
|||||||||||||
|
|
|
|||||||||||||
|
|
|
|
1 |
if |
i |
|
|
|
|
|
j 1 |
mod(i N 1) z 0 |
||
|
|
|
|
||||||||||||
|
|
|
|
||||||||||||
|
|
|
|
q |
if |
j |
|
|
|
|
i N 1 |
||||
|
|
|
|
||||||||||||
|
|
|
|
||||||||||||
|
|
|
|
q |
if |
j |
|
|
|
|
i N 1 |
||||
|
|
|
|
||||||||||||
|
|
|
|
||||||||||||
|
|
|
|
0 |
otherwise |
|
|
|
Ɂɞɟɫɶ 0 d i d n 1, 0 d j d n 1 – ɷɬɨ ɢɧɞɟɤɫɵ ɦɚɬɪɢɰɵ A ɨɧɢ ɫɜɹɡɚɧɵ ɫ ɞɪɭɝɢɦɢ ɪɚɧɟɟ ɜɜɟɞɟɧɧɵɦɢ ɢɧɞɟɤɫɚɦɢ i, j ɞɥɹ ɭɡɥɨɜ ɫɟɬɤɢ ɋɟɬɨɱɧɚɹ ɮɭɧɤɰɢɹ ui, j , 1 d i d M 1, 1 d j d N 1 ɜɵɪɚɠɚ
ɟɬɫɹ ɱɟɪɟɡ ɧɚɣɞɟɧɧɵɣ ɜ ɪɟɡɭɥɶɬɚɬɟ ɪɟɲɟɧɢɹ ɋɅȺɍ ɜɟɤɬɨɪ ɪɟɲɟ
ɧɢɹ v |
, 1 d l d n 1 ɫɥɟɞɭɸɳɢɦ ɨɛɪɚɡɨɦ ui, j |
v |
j |
|
|
. |
l |
|
|
1 (N |
1)(i |
1) |
ɉɹɬɢɞɢɚɝɨɧɚɥɶɧɚɹ ɦɚɬɪɢɰɚ A ɢɦɟɟɬ ɫɥɟɞɭɸɳɟɟ ɫɬɪɨɟɧɢɟ

76
|
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
-4 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
1 |
1 |
-4 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
0 |
1 |
-4 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
0 |
0 |
1 |
-4 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
1 |
0 |
0 |
0 |
-4 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
0 |
1 |
0 |
0 |
1 |
-4 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
0 |
0 |
1 |
0 |
0 |
1 |
-4 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
A |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
-4 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
-4 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
-4 |
1 |
0 |
0 |
1 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
-4 |
1 |
0 |
0 |
1 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
-4 |
0 |
0 |
0 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
-4 |
1 |
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
-4 |
1 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
-4 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
-4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
G |
b ɡɚɞɚɟɬɫɹ ɜ ɞɚɧɧɨɣ ɡɚɞɚɱɟ |
|||
ȼɟɤɬɨɪ ɩɪɚɜɨɣ ɱɚɫɬɢ ɋɅȺɍ Av |
||||||||||||||||
ɩɨ ɡɚɤɨɧɭ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
bi |
|
|
' 2 |
if i |
|
IK |
|
|
|
|
|
|
|
|
||
|
|
x |
|
|
|
|
|
|
|
|
, |
|||||
|
|
|
' 2 |
|
|
sin |
S |
(i |
|
1 |
|
IK) |
' |
x otherwise |
||
|
|
|
x |
|
q |
|
|
|
|
|
||||||
ɝɞɟ IK |
|
(M 2)N M 2 – ɱɢɫɥɨ ɨɩɪɟɞɟɥɹɸɳɟɟ ɜ ɢɧɞɟɤɫɚɯ ɜɟɤ |
ɬɨɪɚ ɪɟɲɟɧɢɹ ɧɚɱɚɥɨ ɩɨɫɥɟɞɧɟɝɨ ɫɥɨɹ ɜɧɭɬɪɟɧɧɢɯ ɭɡɥɨɜ ɩɨ ɨɫɢ y , ɧɚ ɤɨɬɨɪɵɯ ɭɱɢɬɵɜɚɟɬɫɹ ɡɚɞɚɧɧɨɟ ɝɪɚɧɢɱɧɨɟ ɭɫɥɨɜɢɟ Ɂɚɞɚɧɧɚɹ ɮɭɧɤɰɢɹ ɢɡ ɭɪɚɜɧɟɧɢɹ ɜ ɞɚɧɧɨɣ ɡɚɞɚɱɟ ɹɜɥɹɸɳɚɹɫɹ ɤɨɧɫɬɚɧɬɨɣ f (x, y) { 1 ɜɯɨɞɢɬ ɜ ɩɪɚɜɭɸ ɱɚɫɬɶ ɋɅȺɍ ɜ ɜɢɞɟ ɫɥɚɝɚɟɦɨɝɨ
1 ('x)2 Ɂɧɚɱɟɧɢɹ ɜɟɤɬɨɪɚ ɩɪɚɜɨɣ ɱɚɫɬɢ ɜ ɞɚɧɧɨɣ ɡɚɞɚɱɟ
bT= |
|
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
|
0 |
–0.04 |
–0.04 |
–0.04 |
–0.04 |
–0.04 |
–0.04 |
–0.04 |
–0.04 |
||
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
|
|
|
–0.04 |
–0.04 |
–0.04 |
–0.04 |
0.628 |
0.991 |
0.991 |
0.628 |
|

77
Ɋɢɫ 7.3
ɇɚ ɪɢɫ ɩɨɤɚɡɚɧɨ ɪɚɫɩɪɟɞɟɥɟɧɢɟ ɮɭɧɤɰɢɢ ɪɟɲɟɧɢɹ ɚɧɚɥɨ ɝɢɱɧɨɣ ɤɪɚɟɜɨɣ ɡɚɞɚɱɢ ɜ ɞɜɭɦɟɪɧɨɣ ɨɛɥɚɫɬɢ ɩɪɢ ɩɨɪɹɞɤɟ ɋɅȺɍ n 361 Ɋɟɲɟɧɢɟ ɩɨɥɭɱɟɧɨ ɤɨɦɛɢɧɢɪɨɜɚɧɧɵɦ ɦɟɬɨɞɨɦ Ɂɟɣɞɟɥɹ-
Ɉɋɉ ɩɪɢ ɨɩɬɢɦɚɥɶɧɨɦ ɩɚɪɚɦɟɬɪɟ k0 |
0.425 ɡɚ m 41 ɢɬɟɪɚɰɢɣ |
ɫ ɨɬɧɨɫɢɬɟɥɶɧɨɣ ɬɨɱɧɨɫɬɶɸ ɪɟɲɟɧɢɹ ɜ H 10 5 Ɉɛɵɱɧɵɣ ɦɟɬɨɞ |
|
Ɂɟɣɞɟɥɹ ɫɯɨɞɢɬɫɹ ɡɞɟɫɶ ɥɢɲɶ ɡɚ m |
305 ɢɬɟɪɚɰɢɣ ɢ ɫɨɩɨɫɬɚɜɢɦ |
ɩɨ ɜɪɟɦɟɧɢ ɪɟɲɟɧɢɹ ɫ ɩɪɹɦɵɦ ɦɟɬɨɞɨɦ ȿɳɟ ɛɨɥɶɲɟɟ ɱɢɫɥɨ ɬɪɟ ɛɭɟɦɵɯ ɢɬɟɪɚɰɢɣ ɩɨɤɚɡɵɜɚɸɬ ɜ ɞɚɧɧɨɣ ɡɚɞɚɱɟ ɦɟɬɨɞ Ɉɋɉ ɫ ɦɚɬ ɪɢɰɟɣ - m 546 .
Ɉɬɦɟɬɢɦ ɱɬɨ ɦɚɬɪɢɰɚ ɡɚɞɚɱɢ ɩɪɢ 'x 'y ɢ ɡɚɞɚɧɧɨɦ n ɩɨ ɫɬɨɹɧɧɚ ɢ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɤɪɚɟɜɵɯ ɭɫɥɨɜɢɣ ɢ ɢɫɬɨɱɧɢɤɨɜ f (x, y) , ɤɨɬɨɪɵɟ ɜɯɨɞɹɬ ɜ ɩɪɚɜɭɸ ɱɚɫɬɶ ɋɅȺɍ ɋɨɨɬɜɟɬɫɬɜɟɧɧɨ ɡɚɞɚɱɢ ɫ ɪɚɡɥɢɱɧɵɦɢ ɤɪɚɟɜɵɦɢ ɭɫɥɨɜɢɹɦɢ ɢ ɢɫɬɨɱɧɢɤɚɦɢ ɦɨɝɭɬ ɪɟɲɚɬɶɫɹ ɫ ɬɟɦ ɠɟ ɫɚɦɵɦ ɨɩɬɢɦɚɥɶɧɵɦ ɩɚɪɚɦɟɬɪɨɦ ɧɚɣɞɟɧɧɵɦ ɨɞɢɧ ɪɚɡ ɞɥɹ ɞɚɧɧɨɣ ɫɟɬɤɢ
7.5. Ʌɚɛɨɪɚɬɨɪɧɵɟ ɡɚɞɚɧɢɹ ɤ ɬɟɦɟ ©ɑɢɫɥɟɧɧɨɟ ɪɟɲɟɧɢɟ ɭɪɚɜɧɟɧɢɣ ɜ ɱɚɫɬɧɵɯ ɩɪɨɢɡɜɨɞɧɵɯª
Ʌɚɛɨɪɚɬɨɪɧɵɟ ɪɚɛɨɬɵ ɩɨ ɬɟɦɟ ɦɨɝɭɬ ɛɵɬɶ ɜɵɩɨɥɧɟɧɵ ɫ ɩɨ ɦɨɳɶɸ ɦɚɬɟɦɚɬɢɱɟɫɤɢɯ ɩɚɤɟɬɨɜ ɩɪɨɝɪɚɦɦ Mathcad ɢɥɢ Matlab. ȼ ɪɟɡɭɥɶɬɚɬɟ ɪɚɛɨɬɵ ɞɨɥɠɧɚ ɛɵɬɶ ɩɪɟɞɫɬɚɜɥɟɧɚ ɢɫɤɨɦɚɹ ɫɟɬɨɱɧɚɹ ɮɭɧɤɰɢɹ ɜ ɜɢɞɟ ɦɚɬɪɢɰɵ ɡɧɚɱɟɧɢɣ ɜ ɭɡɥɚɯ ɫɟɬɤɢ ɥɢɛɨ ɜ ɜɢɞɟ ɩɨ

78
ɫɥɨɣɧɨɝɨ ɩɨ ɜɪɟɦɟɧɢ ɪɚɫɩɪɟɞɟɥɟɧɢɹ ɡɧɚɱɟɧɢɣ ɫɟɬɨɱɧɵɯ ɜɟɤɬɨɪɨɜ ɋɥɟɞɭɟɬ ɬɚɤɠɟ ɩɪɢɜɟɫɬɢ ɝɪɚɮɢɱɟɫɤɨɟ ɩɪɟɞɫɬɚɜɥɟɧɢɟ ɪɟɡɭɥɶɬɚɬɨɜ
Ƚɢɩɟɪɛɨɥɢɱɟɫɤɢɟ ɭɪɚɜɧɟɧɢɹ
ȼɚɪɢɚɧɬɵ ɡɚɞɚɧɢɣ ɞɥɹ ɨɞɧɨɦɟɪɧɨɝɨ ɜɨɥɧɨɜɨɝɨ ɭɪɚɜɧɟɧɢɹ ɫ ɝɪɚɧɢɱɧɵɦɢ ɢ ɧɚɱɚɥɶɧɵɦɢ ɭɫɥɨɜɢɹɦɢ ɫɦ 7.2).
ʋ |
X |
T |
L |
R |
|
|
|
|
|
|
f (x) |
g(x) |
c |
' |
Ɇɟɬɨɞ |
|
||||
ɩ ɩ |
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|||||
1.1 |
1 |
1 |
0 |
0 |
sin(Sx) |
|
|
|
|
|
0 |
2 |
0.1, |
1 |
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.05 |
|
|
1.2 |
1 |
2 |
0 |
0 |
sin(Sx) sin(2Sx) |
0 |
1 |
0.1, |
1 |
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.05 |
|
|
1.3 |
S |
1 |
0 |
0 |
|
|
|
x,x 0.5X |
0 |
2 |
0.1, |
1 |
|
|||||||
|
|
|
|
|
® |
|
|
|
|
|
|
|
|
|
|
|
|
0.05 |
|
|
|
|
|
|
|
¯ x X ,xt0.5X |
|
|
|
|
|
||||||||||
1.4 |
1 |
2 |
0 |
0 |
|
|
|
x,x 0.75 |
0 |
1 |
0.1, |
1 |
|
|||||||
|
|
|
|
|
® |
|
|
|
|
|
|
|
|
|
|
|
|
0.05 |
|
|
|
|
|
|
|
¯ 3x 3,xt0.75 |
|
|
|
|
|
||||||||||
1.5 |
S |
1 |
0 |
0 |
x(S x) |
|
|
|
0 |
2 |
0.1, |
1 |
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.05 |
|
|
1.6 |
1 |
2 |
0 |
0 |
x x |
3 |
|
|
|
|
|
|
0 |
1 |
0.1, |
1 |
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.05 |
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.7 |
S |
1 |
0 |
0 |
x sin(x) |
|
|
|
|
|
0 |
2 |
0.1, |
1 |
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0.05 |
|
|
1.8 |
1 |
2 |
0 |
0 |
x |
2 |
(1 x |
2 |
) |
0 |
1 |
0.1, |
1 |
|
||||||
|
|
|
|
|
|
|
|
|
|
0.05 |
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.9 |
S |
1 |
0 |
0 |
x(S |
2 |
x |
2 |
) |
0 |
2 |
0.1, |
1 |
|
||||||
|
|
|
|
|
|
|
|
|
|
0.05 |
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1.10 |
1 |
2 |
0 |
0 |
x(1 x |
3 |
) |
|
|
|
0 |
1 |
0.1, |
1 |
|
|||||
|
|
|
|
|
|
|
|
|
|
|
0.05 |
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɉɚɪɚɛɨɥɢɱɟɫɤɢɟ ɭɪɚɜɧɟɧɢɹ
ȼɚɪɢɚɧɬɵ ɡɚɞɚɧɢɣ ɞɥɹ ɨɞɧɨɦɟɪɧɨɝɨ ɭɪɚɜɧɟɧɢɹ ɬɟɩɥɨɩɪɨɜɨɞ ɧɨɫɬɢ ɫ ɝɪɚɧɢɱɧɵɦɢ ɢ ɧɚɱɚɥɶɧɵɦɢ ɭɫɥɨɜɢɹɦɢ ɫɦ
79
ʋ |
X |
T |
L |
R |
|
f (x) |
g(x) |
c |
' |
Ɇɟɬɨɞ |
|
ɩ ɩ |
|
|
|
|
x |
|
|||||
2.1 |
1 |
0.1 |
0 |
0 |
sin(Sx) |
0 |
1 |
0.01 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.2 |
1 |
1 |
0 |
0 |
sin(Sx) |
0 |
1 |
0.01 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.3 |
1 |
0.1 |
0 |
0 |
sin(Sx) sin(2Sx) |
0 |
1 |
0.01 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.4 |
1 |
2 |
0 |
0 |
sin(Sx) sin(2Sx) |
0 |
1 |
0.01 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S |
0.1 |
0 |
0 |
|
x,x 0.5X |
0 |
1 |
0.01 S |
1 |
|
2.5 |
® |
|
|
||||||||
|
|
|
|
¯ x X ,xt0.5X |
|
|
|
|
|
||
2.6 |
S |
1 |
0 |
0 |
|
x,x 0.5X |
0 |
1 |
0.01 S |
2 |
|
® |
|
|
|||||||||
|
|
|
|
|
¯ x X ,xt0.5X |
|
|
|
|
|
|
2.7 |
S |
0.1 |
0 |
0 |
x(S x) |
0 |
1 |
0.01 S |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.8 |
S |
2 |
0 |
0 |
x(S x) |
0 |
1 |
0.01 S |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.9 |
1 |
0.1 |
0 |
0 |
x x3 |
0 |
1 |
0.01 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.10 |
1 |
1 |
0 |
0 |
x x3 |
0 |
1 |
0.01 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.11 |
S |
0.1 |
0 |
0 |
x sin(x) |
0 |
1 |
0.01.. |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2.12 |
S |
2 |
0 |
0 |
x sin( x) |
0 |
1 |
0.01 S |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɇɟɬɨɞɵ - ɹɜɧɵɣ - ɧɟɹɜɧɵɣ ɫɜɟɞɟɧɢɟɦ ɤ ɋɅȺɍ ɢ ɩɨɫɥɟ ɞɭɸɳɢɦ ɪɟɲɟɧɢɟɦ ɫɬɚɧɞɚɪɬɧɵɦ ɦɟɬɨɞɨɦ ɋɪɚɜɧɢɬɶ ɫɨ ɫɬɪɨɝɢɦ ɪɟɲɟɧɢɟɦ
80
ɗɥɥɢɩɬɢɱɟɫɤɢɟ ɭɪɚɜɧɟɧɢɹ
Ɋɟɲɢɬɶ ɡɚɞɚɧɧɭɸ ɤɪɚɟɜɭɸ ɡɚɞɚɱɭ ɦɟɬɨɞɨɦ ɫɟɬɨɤ ɫɜɟɞɟɧɢɟɦ ɟɺ ɤ ɋɅȺɍ ɢ ɩɨɫɥɟɞɭɸɳɢɦ ɪɟɲɟɧɢɟɦ ɩɪɹɦɵɦ ɫɬɚɧɞɚɪɬɧɵɦ ɢ ɢɬɟɪɚɰɢɨɧɧɵɦ Ɂɟɣɞɟɥɹ–Ɉɋɉ ɦɟɬɨɞɚɦɢ ɋɪɚɜɧɢɬɶ ɫ ɫɭɳɟɫɬ ɜɭɸɳɢɦ ɫɬɪɨɝɢɦ ɪɟɲɟɧɢɟɦ.
ȼɚɪɢɚɧɬɵ ɡɚɞɚɧɢɣ ɞɥɹ ɤɪɚɟɜɨɣ ɡɚɞɚɱɢ ɫ ɭɪɚɜɧɟɧɢɹɦɢ ɷɥɥɢɩ ɬɢɱɟɫɤɨɝɨ ɬɢɩɚ ɫɦ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ʋɩɩ |
ɍɪɚɜɧɟɧɢɟ |
X |
Y |
u0 ( x) |
|
uY ( x) |
|
u0 ( y) |
u X ( y) |
'x |
f ( x, y) |
|||
|
|
'y |
||||||||||||
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.1 |
1 |
1 |
1 |
sin(Sy) |
|
0 |
|
|
0 |
0 |
0.2, |
– |
||
|
|
|
0.1 |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.2 |
2 |
1 |
1 |
x2 |
|
( x 1)2 |
|
y |
2 |
( y 1)2 |
0.2, |
–1 |
||
|
|
|
0.1 |
|||||||||||
3.3 |
1 |
1 |
1 |
|
|
uȽ |
x y |
|
0.2, |
– |
||||
|
|
|
0.1 |
|||||||||||
3.4 |
3 |
1 |
1 |
uȽ |
cos(2x) sin(2 y) |
0.2, |
0, g ( x, y) 4 |
|||||||
0.1 |
||||||||||||||
3.5 |
1 |
1 |
1 |
0 |
|
x |
0 |
|
y |
0.2, |
– |
|||
|
|
0.1 |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.6 |
2 |
1 |
1 |
x3 |
|
x3 |
0 |
|
1 |
0.2, |
y |
|||
|
|
0.1 |
||||||||||||
3.7 |
1 |
4 |
4 |
10 |
|
120 |
90 |
40 |
0.5, |
- |
||||
|
0.25 |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.8 |
2 |
1 |
1 |
|
|
u |
Ƚ |
x y |
|
0.2, |
–2 |
|||
|
|
|
|
|
|
|
|
|
|
|
|
0.1 |
|
|
3.9 |
1 |
2 |
2 |
10 |
|
20 |
30 |
40 |
0.25 |
– |
||||
|
,0.1 |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.10 |
2 |
1 |
1 |
x3 |
|
( x 1)3 |
|
y |
3 |
( y 1)3 |
0.2, |
2 |
||
|
|
|
|
0.1 |
ɍɪɚɜɧɟɧɢɹ – Ʌɚɩɥɚɫɚ – ɉɭɚɫɫɨɧɚ – Ƚɟɥɶɦɝɨɥɶɰɚ.