
численные методыА.Б. САМОХИН, В.В. ЧЕРДЫНЦЕВ, А.А. ВОРОНЦОВ
.pdf
41
Ⱦɪɭɝɢɟ ɦɟɬɨɞɵ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɛɭɞɭɬ ɪɚɫɫɦɨɬɪɟɧɵ ɜ ɪɚɡɞɟɥɟ
5.3.2.
ɉɪɨɰɟɫɫ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɦɨɠɟɬ ɛɵɬɶ ɷɤɜɢɜɚɥɟɧɬɧɨ ɡɚɩɢɫɚɧ ɬɚɤɠɟ ɜ ɜɢɞɟ ɪɹɞɚ ɩɨ ɫɬɟɩɟɧɹɦ ɨɩɟɪɚɬɨɪɚ B ɬ ɟ ɜ ɜɢɞɟ ɬɚɤ ɧɚɡɵ ɜɚɟɦɨɝɨ ɪɹɞɚ ɇɟɣɦɚɧɚ
G |
G |
G |
B |
2 G |
... |
f |
i G |
(5.3.1.4) |
x |
b |
Bb |
b |
¦ |
B b . |
|||
|
|
|
|
|
|
i 0 |
|
|
ȿɫɥɢ ɦɚɬɪɢɰɚ B ɩɨɫɬɨɹɧɧɚ ɧɟ ɡɚɜɢɫɢɬ ɨɬ ɧɨɦɟɪɚ ɢɬɟɪɚɰɢɢ k ), ɬɨ ɬɚɤɨɣ ɢɬɟɪɚɰɢɨɧɧɵɣ ɩɪɨɰɟɫɫ ɧɚɡɵɜɚɟɬɫɹ ɫɬɚɰɢɨɧɚɪɧɵɦ
ɉɭɫɬɶ xG – ©ɝɢɩɨɬɟɬɢɱɟɫɤɨɟª ɬɨɱɧɨɟ ɪɟɲɟɧɢɟ ɫɬɪɨɝɨ ɭɞɨɜɥɟ
G |
G |
G |
G(k ) |
x |
(k ) |
x |
|
– ɨɲɢɛɤɚ ɧɚ k -ɦ ɲɚɝɟ |
ɬɜɨɪɹɸɳɟɟ x |
Bx |
b |
ɚ 'x |
|
|
ɉɨɞɫɬɚɜɥɹɹ ɜ ɮɨɪɦɭɥɭ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɩɨɥɭɱɚɟɦ ɞɥɹ ɫɨɨɬɧɨɲɟ
ɧɢɹ ɨɲɢɛɨɤ ɧɚ k 1 |
G |
ɢ k -ɦ ɲɚɝɟ 'x |
|
ɨɲɢɛɤɢ |
|
(k 1) B'xG(k ) . Ⱦɥɹ ɧɨɪɦɵ
|
|
|
|
|
|
|
|
|
|
G(k 1) |
|
|
d |
|
B |
|
|
|
|
|
G(k ) |
|
d |
|
B |
|
|
|
k |
|
|
G(1) |
|
|
|
. |
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||
|
|
|
|
|
'x |
|
|
|
|
|
|
|
|
|
|
|
|
|
'x |
|
|
|
|
|
|
|
'x |
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɉɬɫɸɞɚ ɫɥɟɞɭɟɬ ɞɨɫɬɚɬɨɱɧɨɟ ɭɫɥɨɜɢɟ ɫɯɨɞɢɦɨɫɬɢ ɩɪɨɰɟɫɫɚ |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ |
|
|
|
|
B |
|
|
|
|
|
G, |
|
|
G 1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||
Ⱦɟɣɫɬɜɢɬɟɥɶɧɨ ɬɨɝɞɚ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
'xG(k 1) |
|
|
|
|
|
d |
|
B |
|
k |
|
|
'xG(1) |
|
|
|
Gk |
|
'xG(1) |
|
|
|
|
'xG(1) |
|
|
|
. |
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɉɩɟɪɚɬɨɪ ɫ |
|
|
|
B |
|
|
|
|
|
|
|
G 1 ɧɚɡɵɜɚɟɬɫɹ ɫɠɢɦɚɸɳɢɦ ɚ ɩɪɨɰɟɫɫ |
|||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
ɞɥɹ ɧɟɝɨ ɫɯɨɞɹɳɢɦɫɹ ɬ ɤ ɨɲɢɛɤɚ ɭɛɵɜɚɟɬ ɫ ɤɚ ɠɞɵɦ ɲɚɝɨɦ ɧɟɡɚɜɢɫɢɦɨ ɨɬ ɟɺ ɧɚɱɚɥɶɧɨɣ ɜɟɥɢɱɢɧɵ
ɋɩɟɤɬɪɚɥɶɧɵɦ ɪɚɞɢɭɫɨɦ ɦɚɬɪɢɰɵ ɤɨɧɟɱɧɨɦɟɪɧɨɝɨ ɨɩɟɪɚɬɨ
ɪɚ B ɧɚɡɵɜɚɟɬɫɹ U(B) max Ei ɝɞɟ Ei – ɫɨɛɫɬɜɟɧɧɵɟ ɱɢɫɥɚ
i
ɨɩɟɪɚɬɨɪɚ B ɫɦ Ⱦɥɹ ɥɸɛɨɣ ɧɨɪɦɵ ɫɩɪɚɜɟɞɥɢɜɨ ɫɨɨɬɧɨɲɟɧɢɟ U(B) d B
.
Ⱦɨɤɚɡɵɜɚɟɬɫɹ ɱɬɨ ɧɟɨɛɯɨɞɢɦɵɦ ɢ ɞɨɫɬɚɬɨɱɧɵɦ ɭɫɥɨɜɢɟɦ ɫɯɨɞɢɦɨɫɬɢ ɩɪɨɰɟɫɫɚ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɹɜɥɹɟɬɫɹ
U(B) < 1, |
(5.3.1.5) |
42
ɩɪɢ ɷɬɨɦ ɢɬɟɪɚɰɢɢ ɫɯɨɞɹɬɫɹ ɧɟ ɯɭɠɟ ɝɟɨɦɟɬɪɢɱɟɫɤɨɣ ɩɪɨɝɪɟɫɫɢɢ ɫɨ ɡɧɚɦɟɧɚɬɟɥɟɦ q U(B) .
ɍɫɥɨɜɢɟ ɹɜɥɹɟɬɫɹ ɤɚɤ ɩɪɚɜɢɥɨ ɫɢɥɶɧɵɦ ɨɝɪɚɧɢɱɟɧɢ ɟɦ ɩɪɢ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨɦ ɩɪɢɦɟɧɟɧɢɢ ɦɟɬɨɞɚ ɤ
ɡɚɞɚɧɧɨɣ ɋɅȺɍ ȼɵɛɨɪ ɧɨɜɨɝɨ ɨɩɟɪɚɬɨɪɚ ɫ ɞɪɭɝɢɦ ɫɩɟɤɬɪɨɦ
B
ɩɪɢ ɷɤɜɢɜɚɥɟɧɬɧɨɫɬɢ ɢɫɯɨɞɧɨɣ ɫɢɫɬɟɦɟ ɦɨɠɟɬ ɡɧɚɱɢɬɟɥɶɧɨ ɪɚɫɲɢɪɢɬɶ ɨɛɥɚɫɬɶ ɫɯɨɞɢɦɨɫɬɢ ɩɪɨɰɟɫɫɚ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɫ ɟɝɨ ɭɱɚɫɬɢɟɦ
G x
(k 1) G(k ) |
|
k 0, 1, 2, ... . |
(5.3.1.6) |
Bx |
b , |
ȼ ɤɚɱɟɫɬɜɟ ɭɫɥɨɜɢɹ ɜɵɯɨɞɚ ɢɡ ɜɵɱɢɫɥɢɬɟɥɶɧɨɝɨ ɩɪɨɰɟɫɫɚ ɩɨ ɞɨɫɬɢɠɟɧɢɢ ɡɚɞɚɧɧɨɣ ɬɨɱɧɨɫɬɢ ɪɟɲɟɧɢɹ H ɚɧɚɥɨɝɢɱɧɨ
|
G(k 1) |
G(k ) |
|
1 q |
|
|
|
|
|
||||
ɦɨɠɧɨ ɩɪɢɧɹɬɶ |
x |
x |
d |
|
H ɝɞɟ q ɫɩɟɤɬɪɚɥɶɧɵɣ ɪɚ- |
|
q |
||||||
|
|
|
|
|
ɞɢɭɫ B ɢɥɢ ɤɚɤɚɹ-ɥɢɛɨ ɨɰɟɧɤɚ ɞɪɭɝɨɣ ɧɨɪɦɵ B .
Ɇɟɬɨɞ əɤɨɛɢ ɢ ɦɟɬɨɞ Ɂɟɣɞɟɥɹ
ɂɫɬɨɪɢɱɟɫɤɢ ɨɞɧɢɦɢ ɢɡ ɫɚɦɵɯ ɪɚɧɧɢɯ ɢɬɟɪɚɰɢɨɧɧɵɯ ɦɟɬɨɞɨɜ ɹɜɥɹɸɬɫɹ ɦɟɬɨɞ əɤɨɛɢ ɢ ɦɟɬɨɞ Ɂɟɣɞɟɥɹ ɤɨɬɨɪɵɟ ɦɨɝɭɬ ɛɵɬɶ ɩɪɟɞ ɫɬɚɜɥɟɧɵ ɜ ɜɢɞɟ ɦɨɞɢɮɢɤɚɰɢɢ ɦɟɬɨɞɚ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɉɟɪɟɩɢ ɲɟɦ ɜ ɫɥɟɞɭɸɳɟɦ ɜɢɞɟ:
x |
1 |
|
(b a x |
|
a x ... a x ), |
|
||||||||||
|
|
|
|
|
||||||||||||
° |
|
a11 |
1 |
12 |
2 |
|
13 |
3 |
1n n |
|
|
|||||
° 1 |
|
|
|
|
|
|
|
|
||||||||
°.................................................... |
|
|
||||||||||||||
° |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
° |
|
|
|
|
|
|
|
|
aii 1xi 1 aii 1xi 1 ain xn ), (5.3.2.1) |
|||||||
®xi |
|
|
|
|
(bi ai1x1 |
|
||||||||||
|
aii |
|
||||||||||||||
° |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
°.................................................... |
|
|
||||||||||||||
° |
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|||
°x |
|
(b |
a |
x |
|
a x |
... a |
x |
). |
|||||||
|
|
|
||||||||||||||
° n |
|
|
|
|
|
n |
n1 1 |
|
n2 2 |
nn 1 |
n 1 |
|
||||
¯ |
|
|
ann |
|
|
|
|
|
|
|
|
|
||||
ɂɫɩɨɥɶɡɭɟɦ ɞɥɹ ɩɨɫɬɪɨɟɧɢɹ ɩɪɨɰɟɫɫɚ ɢɬɟɪɚɰɢɣ ɧɚ |
||||||||||||||||
G(0) |
|
|
b ɩɪɢ k |
|
0 , |
k |
0,1, 2,...: |
|
|
|||||||
ɱɢɧɚɹ ɫ x |
|
|
|
|
|
|
|
|

43
x(k 1) |
1 |
(b a |
x(k ) ... a |
|
x(k ) |
a |
1 |
x(k ) |
... a |
x(nk )), |
|
|
|||||||||||
i |
ai,i |
i i,1 |
1 |
i,i 1 |
i 1 |
i,i |
i 1 |
i,n |
|
||
|
|
|
|
|
|
|
|
|
|
|
|
i 1, 2,..., n. |
|
|
|
|
|
|
|
|
|
(5.3.2.2) |
|
ȼ ɦɚɬɪɢɱɧɵɯ ɨɛɨɡɧɚɱɟɧɢɹɯ ɦɟɬɨɞ əɤɨɛɢ ɦɨɠɧɨ ɡɚɩɢɫɚɬɶ ɫɥɟ |
|||||||||||
ɞɭɸɳɢɦ ɨɛɪɚɡɨɦ ɉɪɟɞɫɬɚɜɢɦ C |
D A ɝɞɟ |
D — ɞɢɚɝɨɧɚɥɶɧɚɹ |
|||||||||
ɦɚɬɪɢɰɚ ^D`i,i |
^A`i,i ,i |
1, 2,..., n ,^D`i, j |
0,i z j . C — ɦɚɬɪɢɰɚ ɫ |
ɧɭɥɟɜɨɣ ɝɥɚɜɧɨɣ ɞɢɚɝɨɧɚɥɶɸ Ɍɨɝɞɚ ɫɩɪɚɜɟɞɥɢɜɚ ɡɚɩɢɫɶ ɭɪɚɜɧɟ ɧɢɹ ɚɧɚɥɨɝɢɱɧɨ 5.3. ɝɞɟ
|
D |
1 |
|
D |
1 G |
(5.3.2.3) |
B |
C , |
b |
b . |
|||
Ɇɚɬɪɢɰɚ D 1 — ɞɢɚɝɨɧɚɥɶɧɚɹ ɢ ^D 1` |
1 ^A`i,i , i 1, 2,..., n. |
|||||
|
|
|
|
|
i,i |
|
ɇɟɨɛɯɨɞɢɦɵɟ ɢ ɞɨɫɬɚɬɨɱɧɵɟ ɭɫɥɨɜɢɹ ɫɯɨɞɢɦɨɫɬɢ ɦɟɬɨɞɚ əɤɨɛɢ:
U(D 1(D A)) 1.
Ⱦɪɭɝɨɣ ɢɡɜɟɫɬɧɵɣ ɦɟɬɨɞ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɞɥɹ ɫɥɭɱɚɹ ɤɨɝɞɚ B ɫɬɪɨɢɬɫɹ ɧɚ ɨɫɧɨɜɟ ɦɚɬɪɢɰɵ ɫ ɧɭɥɟɜɨɣ ɝɥɚɜɧɨɣ ɞɢɚɝɨɧɚɥɶɸ — ɷɬɨ ɦɟɬɨɞ Ɂɟɣɞɟɥɹ Ɉɧ ɨɬɥɢɱɚɟɬɫɹ ɨɬ ɦɟɬɨɞɚ əɤɨɛɢ ɬɟɦ ɱɬɨ ɩɪɢ ɪɚɫɱɟɬɟ ɤɨɨɪɞɢɧɚɬ ɜɟɤɬɨɪɚ xG(k 1) ɧɚ ɬɟɤɭɳɟɣ ( k 1)-ɣ ɢɬɟɪɚɰɢɢ ɢɫɩɨɥɶɡɭɸɬɫɹ ɧɟ ɬɨɥɶɤɨ ɤɨɨɪɞɢɧɚɬɵ ɜɟɤɬɨɪɚ ɧɚ ɩɪɟɞɵɞɭɳɟɣ k -ɣ
ɢɬɟɪɚɰɢɢ xG(k ) ɧɨ ɢ ɭɠɟ ɪɚɧɟɟ ɧɚɣɞɟɧɧɵɟ ɧɚ ɬɟɤɭɳɟɣ ɢɬɟɪɚɰɢɢ ɤɨɨɪɞɢɧɚɬɵ ɜɟɤɬɨɪɚ xG(k 1) :
x |
(k 1) |
1 |
(b |
a |
x(k 1) |
... a |
|
x(k 1) |
a |
|
x(k ) |
... a |
x(nk )), |
|
|
||||||||||||||
|
i |
|
ai,i |
i |
i,1 |
1 |
i,i |
1 |
i 1 |
i,i |
1 |
i 1 |
i,n |
|
|
|
|
|
k 0, 1, 2, ... . |
|
|
|
|
|
|
|
|||
i |
1, 2, ..., n ; |
|
|
|
|
|
|
(5.3.2.4) |
||||||
|
|
ȼ ɦɚɬɪɢɱɧɵɯ ɨɛɨɡɧɚɱɟɧɢɹɯ ɷɬɨ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɩɪɟɞɫɬɚɜɥɟɧɢɸ |
||||||||||||
ɢɫɯɨɞɧɨɣ ɦɚɬɪɢɰɵ A ɤɚɤ |
A |
L D U ɝɞɟ L – ɧɢɠɧɹɹ ɬɪɟ |
||||||||||||
ɭɝɨɥɶɧɚɹ ɦɚɬɪɢɰɚ |
D – |
ɞɢɚɝɨɧɚɥɶɧɚɹ ɦɚɬɪɢɰɚ ^D`i,i |
^A`i,i , |
|||||||||||
i |
1, 2, ..., n , ɢ U – ɜɟɪɯɧɹɹ ɬɪɟɭɝɨɥɶɧɚɹ ɦɚɬɪɢɰɚ |
|
|

44
ȼ ɨɬɥɢɱɢɟ ɨɬ ɦɟɬɨɞɚ əɤɨɛɢ ɞɟɣɫɬɜɢɟ ɨɩɟɪɚɬɨɪɚ B ɧɚ ɜɟɤɬɨɪ ɩɪɟɞɵɞɭɳɟɣ ɢɬɟɪɚɰɢɢ ɪɚɡɞɟɥɹɟɬɫɹ ɡɞɟɫɶ ɧɚ ɞɜɟ ɱɚɫɬɢ
G(k ) |
D |
1 |
G(k 1) |
D |
1 G(k ) |
, |
(5.3.2.5) |
Bx |
|
Lx |
Ux |
ɢ ɩɪɨɰɟɫɫ ɟɝɨ ɜɨɡɞɟɣɫɬɜɢɹ ɧɨ ɧɟ ɪɟɡɭɥɶɬɚɬ ɧɟɥɶɡɹ ɫɜɟɫɬɢ ɤ ɜɨɡ ɞɟɣɫɬɜɢɸ ɤɚɤɨɣ-ɥɢɛɨ ɦɚɬɪɢɰɵ ɧɚ ɜɟɤɬɨɪ ɩɪɟɞɵɞɭɳɟɣ ɢɬɟɪɚɰɢɢ
Ɇɟɬɨɞ Ɂɟɣɞɟɥɹ ɯɨɪɨɲɨ ɚɥɝɨɪɢɬɦɢɡɢɪɭɟɬɫɹ ȿɫɥɢ ɢɡɜɟɫɬɧɚ ɫɤɨɪɨɫɬɶ ɫɯɨɞɢɦɨɫɬɢ ɦɟɬɨɞɚ ɧɟɬ ɧɟɨɛɯɨɞɢɦɨɫɬɢ ɯɪɚɧɢɬɶ ɨɛɚ ɜɟɤ ɬɨɪɚ xG(k 1) ɢ xG(k) .
Ⱦɨɫɬɚɬɨɱɧɵɦɢ ɭɫɥɨɜɢɹɦɢ ɫɯɨɞɢɦɨɫɬɢ ɦɟɬɨɞɨɜ əɤɨɛɢ ɢ Ɂɟɣɞɟ ɥɹ ɹɜɥɹɟɬɫɹ ɞɢɚɝɨɧɚɥɶɧɨɟ ɩɪɟɨɛɥɚɞɚɧɢɟ ɜ ɦɚɬɪɢɱɧɵɯ ɷɥɟɦɟɧɬɚɯ
q ai,i t ¦ ai, j , q 1, ɞɥɹ ɜɫɟɯ i 1, 2, ..., n ,
jzi
ɨɞɧɚɤɨ ɧɚ ɩɪɚɤɬɢɤɟ ɨɛɥɚɫɬɶ ɫɯɨɞɢɦɨɫɬɢ ɡɧɚɱɢɬɟɥɶɧɨ ɲɢɪɟ ɢ ɨɩ ɪɟɞɟɥɹɟɬɫɹ ɭɫɥɨɜɢɟɦ ɧɚ ɫɩɟɤɬɪɚɥɶɧɵɣ ɪɚɞɢɭɫ ɦɚɬɪɢɰɵɞɥɹ ɦɟɬɨɞɚ əɤɨɛɢ ɢ ɨɩɟɪɚɬɨɪɚ ɞɥɹ ɦɟɬɨɞɚ Ɂɟɣ ɞɟɥɹ Ⱦɥɹ ɪɟɲɟɧɢɹ ɋɅȺɍ ɫ ɥɟɧɬɨɱɧɵɦɢ ɦɚɬɪɢɰɚɦɢ ɦɟɬɨɞ Ɂɟɣ ɞɟɥɹ ɹɜɥɹɟɬɫɹ ɩɪɟɜɨɫɯɨɞɧɵɦ ɢɧɫɬɪɭɦɟɧɬɨɦ Ɍɚɤ ɞɥɹ ɫɢɦɦɟɬɪɢɱ ɧɵɯ ɩɨɥɨɠɢɬɟɥɶɧɨ ɨɩɪɟɞɟɥɟɧɧɵɯ ɦɚɬɪɢɰ ɨɧ ɛɭɞɟɬ ɜɫɟɝɞɚ ɫɯɨɞɹ ɳɢɦɫɹ Ɉɞɧɚɤɨ ɜɨɡɦɨɠɧɨ ɭɥɭɱɲɟɧɢɟ ɫɯɨɞɢɦɨɫɬɢ ɤɚɤ ɦɟɬɨɞɚ Ɂɟɣɞɟɥɹ ɬɚɤ ɢ ɥɸɛɨɝɨ ɞɪɭɝɨɝɨ ɦɟɬɨɞɚ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɫ ɩɨɦɨ ɳɶɸ ɢɡɥɨɠɟɧɧɨɝɨ ɧɢɠɟ ɦɟɬɨɞɚ ɨɩɬɢɦɚɥɶɧɨɝɨ ɫɩɟɤɬɪɚɥɶɧɨɝɨ ɩɚ ɪɚɦɟɬɪɚ
Ɇɟɬɨɞ ɨɩɬɢɦɚɥɶɧɨɝɨ ɫɩɟɤɬɪɚɥɶɧɨɝɨ ɩɚɪɚɦɟɬɪɚ Ɉɋɉ ɞɥɹ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ
Ɋɚɫɫɦɨɬɪɢɦ ɫɥɭɱɚɣ ɤɨɝɞɚ ɫɩɟɤɬɪ ɨɩɟɪɚɬɨɪɚ B ɜɵɯɨɞɢɬ ɡɚ ɝɪɚ ɧɢɰɵ ɟɞɢɧɢɱɧɨɝɨ ɤɪɭɝɚ ɧɚ ɤɨɦɩɥɟɤɫɧɨɣ E-ɩɥɨɫɤɨɫɬɢ ɫɨɛɫɬɜɟɧɧɵɯ ɱɢɫɟɥ ȼ ɷɬɨɦ ɫɥɭɱɚɟ ɪɹɞ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɪɚɫɯɨɞɢɬɫɹ
Ɉɩɪɟɞɟɥɢɦ ɜɵɩɭɤɥɭɸ ɨɛɨɥɨɱɤɭ ɫɩɟɤɬɪɚ ɨɩɟɪɚɬɨɪɚ B ɤɚɤ ɜɵ ɩɭɤɥɭɸ ɡɚɦɤɧɭɬɭɸ ɤɪɢɜɭɸ ɧɚɢɦɟɧɶɲɟɣ ɦɟɪɵ ɩɨɥɧɨɫɬɶɸ ɨɯɜɚɬɵ ɜɚɸɳɭɸ ɫɩɟɤɬɪ ɨɩɟɪɚɬɨɪɚ ɧɚ E-ɩɥɨɫɤɨɫɬɢ Ⱦɨɤɚɡɵɜɚɟɬɫɹ ɱɬɨ ɟɫ ɥɢ ɬɨɱɤɚ 1 ɧɚɯɨɞɢɬɫɹ ɜɧɟ ɜɵɩɭɤɥɨɣ ɨɛɨɥɨɱɤɢ ɫɩɟɤɬɪɚ ɬɨ ɦɨɠɧɨ ɩɨɫɬɪɨɢɬɶ ɫɯɨɞɹɳɢɣɫɹ ɪɹɞ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɫ ɧɨɜɵɦ

45
|
|
|
O k0 |
|
|
|
|
O |
1 k0 |
|
|
,PȜ |
|
|
|
|
|
|
|
~ |
|
|
|
|
ȍB |
|
Im O |
|
|
|
|
|
|
|
|
|
k0 |
ȕmax |
|
|
|
ȕmin |
|
|
|
|
|
|
r |
|
|
|
|
|
|
|
|
|
|
|
Į |
|
|
|
|
1 |
|
5HȜ |
~ |
1 |
~ |
|
Re O |
||||
|
|
|
r |
|
|
|
|
Ɋɢɫ 5.1 |
|
|
|
|
|
|
Ⱦɚɞɢɦ ɤɨɧɫɬɪɭɤɬɢɜɧɵɣ ɫɩɨɫɨɛ ɩɨɫɬɪɨɟɧɢɹ |
||||||
ɨɩɟɪɚɬɨɪɨɦ B f (B) |
|||||||
ɬɚɤɨɝɨ ɫɯɨɞɹɳɟɝɨɫɹ ɪɹɞɚ ɉɪɢɦɟɦ |
|
|
|
|
|||
|
|
B kI |
G |
b |
|
|
|
|
|
|
|
||||
B |
|
|
, |
b |
|
, |
(5.3.3.1) |
|
1 k |
1 k |
ɝɞɟ k – ɤɨɦɩɥɟɤɫɧɵɣ ɩɚɪɚɦɟɬɪ ɉɪɢ k z 1 ɢɫɯɨɞɧɵɟ ɭɪɚɜɧɟɧɢɹ
|
|
ɫ ɨɩɟɪɚɬɨɪɚɦɢ B ɢ B ɷɤɜɢɜɚɥɟɧɬɧɵ ȼɵɛɨɪɨɦ k ɩɨɩɪɨ |
|
ɛɭɟɦ ɞɨɛɢɬɶɫɹ ɫɯɨɞɢɦɨɫɬɢ ɪɹɞɚ |
|
ɉɭɫɬɶ :B – ɨɞɢɧ ɢɡ ɦɧɨɠɟɫɬɜɚ ɤɪɭɝɨɜ ɪɚɞɢɭɫɚ r ɩɨɥɧɨɫɬɶɸ |
|
ɨɯɜɚɬɵɜɚɸɳɢɯ ɫɩɟɤɬɪ ɨɩɟɪɚɬɨɪɚ |
B ɢ ɩɭɫɬɶ ɩɪɢ ɷɬɨɦ ɬɨɱɤɚ |
1 :B Ɋɢɫ Ɉɱɟɜɢɞɧɨ ɱɬɨ :B ɜɤɥɸɱɚɟɬ ɜ ɫɟɛɹ ɜɵɩɭɤɥɭɸ ɨɛɨ |
|
ɥɨɱɤɭ ɫɩɟɤɬɪɚ ȼɟɤɬɨɪ ɢɡ ɧɚɱɚɥɚ E |
0 ɜ ɰɟɧɬɪ ɷɬɨɝɨ ɤɪɭɝɚ ɨɛɨɡɧɚ |
ɱɢɦ k0 ɉɪɢ ɞɪɨɛɧɨ-ɥɢɧɟɣɧɨɦ ɩɪɟɨɛɪɚɡɨɜɚɧɢɢ ɫ k k0
ɤɪɭɝ :B |
ɩɟɪɟɯɨɞɢɬ ɜ ɤɪɭɝ : ɫ ɰɟɧɬɪɨɦ ɜ ɬɨɱɤɟ E 0 ɢ ɪɚɞɢɭ |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
B |
ɫɨɦ |
|
r |
|
|
r |
|
ȿɫɥɢ |
|
r |
|
1 ɬɨ ɪɹɞ ɫɯɨɞɢɬɫɹ |
|
|
|
|
|
|
||||||
|
|
1 k0 |
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|

46
ɇɚɣɞɟɦ ɦɢɧɢɦɭɦ ɡɧɚɱɟɧɢɹ r ɉɭɫɬɶ ɤɪɭɝ :B ©ɜɢɞɟɧª ɢɡ ɬɨɱɤɢ1 ɩɨɞ ɭɝɥɨɦ 2D ɉɭɫɬɶ r ɜɟɤɬɨɪ ɢɡ ɰɟɧɬɪɚ ɤɪɭɝɚ k0 ɜ ɬɨɱɤɭ
ɤɚɫɚɧɢɹ |
ɥɭɱɚ ɢɡ ɬ ɢ ɤɪɭɝɚ |
ɂɡ |
ɪɢɫ ɨɱɟɜɢɞɧɨ ɱɬɨ |
||||||||
|
r |
|
|
rGG |
|
sin(D) ɢ ɫɥɟɞɨɜɚɬɟɥɶɧɨ |
|
r |
|
|
1. |
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
||||||
|
|
|
1 |
k0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ ɟɫɥɢ :B ɬɚɤɨɣ ɤɪɭɝ ɱɬɨ ɬɨɱɤɚ 1 :B ɢ ©ɜɢɞɢ ɦɵɣª ɢɡ ɬɨɱɤɢ 1 ɩɨɞ ɧɚɢɦɟɧɶɲɢɦ ɭɝɥɨɦ 2D ɬɨ ɤɨɦɩɥɟɤɫɧɨɟ ɪɚɫ ɫɬɨɹɧɢɟ ɞɨ ɰɟɧɬɪɚ ɷɬɨɝɨ ɤɪɭɝɚ ɟɫɬɶ ɨɩɬɢɦɚɥɶɧɵɣ ɩɚɪɚɦɟɬɪ ɞɥɹ ɫɯɨɞɢɦɨɫɬɢ ɚ ɫɤɨɪɨɫɬɶ ɫɯɨɞɢɦɨɫɬɢ ɪɹɞɚ ɧɟ ɯɭɠɟ ɱɟɦ ɭ ɝɟɨɦɟɬɪɢɱɟɫɤɨɣ ɩɪɨɝɪɟɫɫɢɢ ɫɨ ɡɧɚɦɟɧɚɬɟɥɟɦ sin(D) .
ɉɭɫɬɶ ɞɥɹ ɫɩɟɤɬɪɚ ^EQ` ɢɡɜɟɫɬɧɵ ɨɰɟɧɤɢ ɞɥɹ Emin , Emax - ɦɢɧɢɦɚɥɶɧɨɝɨ ɢ ɦɚɤɫɢɦɚɥɶɧɨɝɨ ɩɨ ɦɨɞɭɥɸ ɫɨɛɫɬɜɟɧɧɨɝɨ ɱɢɫɥɚɢɥɢ ɧɢɠɧɟɣ ɢ ɜɟɪɯɧɟɣ ɝɪɚɧɢɰɵ ɪɚɫɫɬɨɹɧɢɹ ɨɬ ɬ 0 ɞɨ ɨɛɥɚɫɬɢ ɪɚɫɩɨɥɨɠɟɧɢɹ ɫɩɟɤɬɪɚ ɜ ɫɥɭɱɚɟ ɧɟɩɪɟɪɵɜɧɨɝɨ ɫɩɟɤɬɪɚɥɶɧɨɝɨ ɦɧɨɠɟɫɬɜɚ . Ɍɨɝɞɚ ɟɫɥɢ ɜɟɫɶ ɫɩɟɤɬɪ ɨɩɟɪɚɬɨɪɚ ɪɚɡɦɟɳɚɟɬɫɹ ɜ ɤɪɭ ɝɟ :B ɧɚɬɹɧɭɬɨɦ ɧɚ ɬɨɱɤɢ Emin , Emax ɤɚɤ ɧɚ ɤɨɧɰɟɜɵɟ ɬɨɱɤɢ ɞɢɚ ɦɟɬɪɚ ɢ ɬɨɱɤɚ 1 :B ɞɥɹ ɨɩɬɢɦɚɥɶɧɨɝɨ ɩɚɪɚɦɟɬɪɚ ɜɟɪɧɚ ɩɪɨɫɬɚɹ ɩɪɢɛɥɢɠɟɧɧɚɹ ɮɨɪɦɭɥɚ
k0 |
Emin Emax . |
(5.3.3.2) |
|
2 |
|
ȿɫɥɢ ɝɪɚɧɢɰɚ ɤɪɭɝɚ ɩɪɢɧɚɞɥɟɠɢɬ ɫɩɟɤɬɪɭ ɬɨ ɮɨɪɦɭɥɚ ɬɨɱɧɚɹ Ɍɨɱɧɚɹ ɨɧɚ ɬɚɤɠɟ ɢ ɜ ɫɥɭɱɚɟ ɜɟɳɟɫɬɜɟɧɧɨɝɨ ɫɩɟɤɬɪɚ Ɏɨɪ ɦɭɥɭ 5.3.3.2 ɦɨɠɧɨ ɭɥɭɱɲɢɬɶ ɭɱɢɬɵɜɚɹ ɛɨɥɟɟ ɬɨɱɧɭɸ ɤɨɧɮɢɝɭ ɪɚɰɢɸ ɫɩɟɤɬɪɚɥɶɧɨɣ ɨɛɥɚɫɬɢ ɧɚɩɪɢɦɟɪ ɟɫɥɢ ɨɛɥɚɫɬɶ ɪɚɫɩɨɥɨɠɟ ɧɢɹ ɫɩɟɤɬɪɚ – ɩɪɹɦɚɹ ɥɢɧɢɹ ɋ ɩɨɦɨɳɶɸ ɮɨɪɦɭɥɵ ɜɨ ɦɧɨɝɢɯ ɫɥɭɱɚɹɯ ɦɨɠɧɨ ɧɚɣɬɢ ɡɧɚɱɟɧɢɟ ɛɥɢɡɤɨɟ ɤ ɨɩɬɢɦɚɥɶɧɨɦɭ ɩɚɪɚɦɟɬɪɭ ɜ ɭɫɥɨɜɢɹɯ ɧɟɩɨɥɧɨɝɨ ɡɧɚɧɢɹ ɫɜɨɣɫɬɜ ɫɩɟɤɬɪɚ ɧɨ ɩɪɢ ɢɡɜɟɫɬɧɵɯ ɦɢɧɢɦɚɥɶɧɵɯ ɢ ɦɚɤɫɢɦɚɥɶɧɵɯ ɩɨ ɦɨɞɭɥɸ ɫɨɛɫɬɜɟɧɧɵɯ ɱɢɫɥɚɯ
ɋɯɨɞɢɦɨɫɬɶ ɤɚɠɞɨɝɨ ɢɡ ɪɚɫɫɦɨɬɪɟɧɧɵɯ ɦɟɬɨɞɨɜ ɩɪɨɫɬɨɣ ɢɬɟ ɪɚɰɢɢ ɡɚɜɢɫɢɬ ɨɬ ɤɨɧɤɪɟɬɧɨɝɨ ɜɢɞɚ ɢɫɯɨɞɧɨɣ ɦɚɬɪɢɰɵ ɚ ɬɨɱɧɟɟ

47
ɨɬ ɫɜɨɣɫɬɜ ɟɺ ɫɩɟɤɬɪɚ Ɇɨɠɧɨ ɩɪɢɜɟɫɬɢ ɩɪɢɦɟɪɵ ɦɚɬɪɢɰ ɞɥɹ ɤɨ ɬɨɪɵɯ ɫɯɨɞɢɬɫɹ ɬɨɥɶɤɨ ɨɞɢɧ ɢɡ ɪɚɫɫɦɨɬɪɟɧɧɵɯ ɦɟɬɨɞɨɜ ɨɞɧɚɤɨ ɤɨɦɛɢɧɚɰɢɹ ɦɟɬɨɞɚ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ Ɂɟɣɞɟɥɹ ɢɥɢ əɤɨɛɢ ɫ ɦɟɬɨ ɞɨɦ ɨɩɬɢɦɚɥɶɧɨɝɨ ɫɩɟɤɬɪɚɥɶɧɨɝɨ ɩɚɪɚɦɟɬɪɚ Ɉɋɉ ɩɨɡɜɨɥɹɸɬ ɞɨ ɛɢɬɶɫɹ ɫɯɨɞɢɦɨɫɬɢ ɜ ɫɥɭɱɚɹɯ ɤɨɝɞɚ ɤɚɠɞɵɣ ɢɡ ɷɬɢɯ ɦɟɬɨɞɨɜ ɩɨ ɨɬɞɟɥɶɧɨɫɬɢ ɪɚɫɯɨɞɢɬɫɹ
Ɋɚɫɫɦɨɬɪɢɦ ɩɪɢɦɟɧɟɧɢɟ ɦɟɬɨɞɚ Ɉɋɉ ɧɚ ɩɪɢɦɟɪɚɯ ɤɨɧɤɪɟɬɧɵɯ ɦɚɬɪɢɱɧɵɯ ɡɚɞɚɱ
ɉɭɫɬɶ ɷɥɟɦɟɧɬɵ ɦɚɬɪɢɰɵ A ɩɪɢ n 2 ɫɥɟɞɭɸɳɢɟ a11 2 ,
a22 2 , |
a12 3, |
a21 7 . Cɨɛɫɬɜɟɧɧɵɟ ɱɢɫɥɚ ɦɚɬɪɢɰɵ B (5.3.1.2) |
|
ɪɚɜɧɵ E |
4 , E |
2 |
6 ɢ ɪɚɫɩɨɥɚɝɚɸɬɫɹ ɩɨ ɪɚɡɧɵɟ ɫɬɨɪɨɧɵ ɨɬ ɬɨɱ |
1 |
|
|
ɤɢ 1 ɧɚ ɩɪɹɦɨɣ ɩɪɨɯɨɞɹɳɟɣ ɱɟɪɟɡ ɧɟɺ ȼ ɷɬɨɦ ɫɥɭɱɚɟ ɬɨɱɤɚ 1 ɩɪɢɧɚɞɥɟɠɢɬ ɜɵɩɭɤɥɨɣ ɨɛɨɥɨɱɤɟ ɫɩɟɤɬɪɚ ɢ ɞɪɨɛɧɨ-ɥɢɧɟɣɧɵɦ ɩɪɟɨɛɪɚɡɨɜɚɧɢɟɦ ɧɟɥɶɡɹ ɞɨɛɢɬɶɫɹ ɫɯɨɞɢɦɨɫɬɢ ɢɬɟɪɚɰɢ ɨɧɧɨɝɨ ɩɪɨɰɟɫɫɚ ɋɨɛɫɬɜɟɧɧɵɟ ɠɟ ɱɢɫɥɚ ɦɚɬɪɢɰɵ əɤɨɛɢ ɪɚɜɧɵ Y1 2.3i , Y2 2.3i ɡɞɟɫɶ i – ɦɧɢɦɚɹ ɟɞɢɧɢɰɚ ɢ ɬɨɱɤɚ 1 ɧɚɯɨɞɢɬɫɹ ɜɧɟ ɜɵɩɭɤɥɨɣ ɨɛɨɥɨɱɤɢ ɫɩɟɤɬɪɚ Ɍɨ ɠɟ ɫɚɦɨɟ ɦɨɠɧɨ ɭɬɜɟɪɠɞɚɬɶ ɢ ɨ ɫɩɟɤɬɪɟ ɨɩɟɪɚɬɨɪɚ Ɂɟɣɞɟɥɹ Ɉɞɧɚɤɨ ɧɟɩɨɫɪɟɞɫɬ ɜɟɧɧɨɟ ɩɪɢɦɟɧɟɧɢɟ ɦɟɬɨɞɚ əɤɨɛɢ ɢɥɢ Ɂɟɣɞɟɥɹ ɧɟ ɩɪɢɜɟɞɺɬ ɤ ɫɯɨ ɞɹɳɟɦɭɫɹ ɪɹɞɭ ɬ ɤ YQ !1 ɢ ɧɟ ɜɵɩɨɥɧɹɟɬɫɹ Ɂɚɤɥɸɱɚɹ
ɫɩɟɤɬɪ YQ ɜ ɤɪɭɝ :Y ɫ ɰɟɧɬɪɨɦ ɜ ɬ 8 |
ɩɪɢɯɨɞɢɦ ɤ ɫɯɨɞɹɳɟɦɭɫɹ |
ɦɟɬɨɞɭ əɤɨɛɢ – Ɉɋɉ ɫ ɩɚɪɚɦɟɬɪɨɦ k |
8 Ⱦɥɹ ɦɟɬɨɞɚ Ɂɟɣɞɟɥɹ - |
Ɉɋɉ ɨɩɬɢɦɚɥɶɧɵɣ ɩɚɪɚɦɟɬɪ k 1 ɩɪɢɜɨɞɢɬ ɤ ɛɵɫɬɪɨ ɫɯɨɞɹɳɟɦɭ ɫɹ ɩɪɨɰɟɫɫɭ Ɋɟɲɟɧɢɟ ɋɅȺɍ ɫ ɩɪɚɜɨɣ ɱɚɫɬɶɸ bQ 1,i 1, 2 ɢ
ɬɨɱɧɨɫɬɶɸ H 10 5 ɞɨɫɬɢɝɚɟɬɫɹ ɡɚ m 20 ɢɬɟɪɚɰɢɣ ɪɹɞɚ ɇɚɨɛɨɪɨɬ ɟɫɥɢ ɦɚɬɪɢɰɚ əɤɨɛɢ ɨɩɟɪɚɬɨɪ Ɂɟɣɞɟɥɹ ɢɦɟɸɬ
ɫɩɟɤɬɪ ɜɵɩɭɤɥɚɹ ɨɛɨɥɨɱɤɚ ɤɨɬɨɪɨɝɨ ɫɨɞɟɪɠɢɬ ɬ 1 ɬɨ ɧɢɤɚɤɢɟ ɦɨɞɢɮɢɤɚɰɢɢ ɷɬɢɯ ɦɟɬɨɞɨɜ ɧɟ ɩɪɢɜɟɞɭɬ ɤ ɫɯɨɞɹɳɟɦɭɫɹ ɩɪɨɰɟɫɫɭ ɉɪɢɦɟɧɟɧɢɟ ɦɟɬɨɞɚ Ɉɋɉ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɤ ɢɫɯɨɞɧɨɣ ɦɚɬɪɢɰɟ ɜ ɜɢɞɟ ɦɨɠɟɬ ɩɪɢɜɟɫɬɢ ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɤ ɫɯɨɞɢɦɨɫɬɢ Ɍɚɤɨɜɚ
ɦɚɬɪɢɰɚ ɫ ɷɥɟɦɟɧɬɚɦɢ a11 5, a22 0.7 , a12 |
4 , a21 |
2 , ɞɥɹ ɤɨ |
||
ɬɨɪɨɣ ɫɨɛɫɬɜɟɧɧɵɟ ɱɢɫɥɚ ɦɚɬɪɢɰɵ E |
1.5 |
, E |
2 |
0.8 ɚ ɫɨɛ |
1 |
|
|
|
48
ɫɬɜɟɧɧɵɟ ɱɢɫɥɚ ɦɚɬɪɢɰɵ -Y1 1.5, Y2 1.5 ɉɪɢɦɟɧɟɧɢɟ ɦɟ ɬɨɞɨɜ əɤɨɛɢ ɢ Ɂɟɣɞɟɥɹ ɢ ɢɯ ɦɨɞɢɮɢɤɚɰɢɣ ɞɚɸɬ ɪɚɫɯɨɞɹɳɢɣɫɹ ɩɪɨɰɟɫɫ ɬ ɤ ɬɨɱɤɚ 1 ɩɪɢɧɚɞɥɟɠɢɬ ɜɵɩɭɤɥɨɣ ɨɛɨɥɨɱɤɟ ɫɩɟɤɬɪɚ ɉɪɢɦɟɧɟɧɢɟ ɠɟ ɦɟɬɨɞɚ Ɉɋɉ ɤ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɫ ɦɚɬɪɢɰɟɣɞɚɟɬ ɛɵɫɬɪɨ ɫɯɨɞɹɳɢɣɫɹ ɪɹɞ Ɋɟɲɟɧɢɟ ɋɅȺɍ ɫ ɬɨɱ
ɧɨɫɬɶɸ H 10 5 ɞɨɫɬɢɝɚɟɬɫɹ ɡɚ m 9 ɢɬɟɪɚɰɢɣ ɪɹɞɚ ɉɪɢɦɟɧɟɧɢɟ ɦɟɬɨɞɚ Ɉɋɉ ɧɚɢɛɨɥɟɟ ɭɫɩɟɲɧɨ ɜ ɬɨɦ ɫɥɭɱɚɟ ɤɨ
ɝɞɚ ɫɩɟɤɬɪ ɨɩɟɪɚɬɨɪɚ B ɜ ɥɨɤɚɥɢɡɨɜɚɧ ɜ ɧɟɛɨɥɶɲɨɣ ɨɤɪɟɫɬ ɧɨɫɬɢ ɫ ɰɟɧɬɪɨɦ ɜ ɬ k0 ɜɞɚɥɢ ɨɬ ɬɨɱɤɢ 1 Ɍɨɝɞɚ ɩɪɢɦɟɧɟɧɢɟ ɷɬɨɝɨ ɦɟɬɨɞɚ ɫ ɨɩɬɢɦɚɥɶɧɵɦ ɩɚɪɚɦɟɬɪɨɦ k k0 ɹɜɥɹɟɬɫɹ ɫɚɦɵɦ ɭɞɚɱ ɧɵɦ ɫɪɟɞɢ ɨɞɧɨɲɚɝɨɜɵɯ ɫɬɚɰɢɨɧɚɪɧɵɯ ɦɟɬɨɞɨɜ ɢ ɩɪɢɜɨɞɢɬ ɤ ɛɵ ɫɬɪɨ ɫɯɨɞɹɳɟɦɭɫɹ ɪɹɞɭ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ȼ ɤɚɱɟɫɬɜɟ ɩɪɢɦɟɪɚ ɪɚɫɫɦɨɬɪɢɦ ɋɅȺɍ ɫ ɦɚɬɪɢɰɟɣ a11 7 , a22 3, a12 4 , a21 1. ȼ ɷɬɨɦ ɩɪɢɦɟɪɟ ɞɥɹ ɦɚɬɪɢɰ ɢ ɢɦɟɟɦ ɫɥɟɞɭɸɳɢɟ ɫɨɛɫɬɜɟɧ
ɧɵɟ ɱɢɫɥɚ E |
4 , E |
2 |
4 ɢ Y |
0.436i , |
Y |
0.436i Ɂɧɚɱɟɧɢɟ |
|||
1 |
|
|
1 |
|
|
2 |
|||
ɨɩɬɢɦɚɥɶɧɨɝɨ ɩɚɪɚɦɟɬɪɚ k0 |
|
E1 E2 |
4 |
ɩɟɪɟɜɨɞɢɬ ɜ ɞɚɧɧɨɦ |
|||||
2 |
|||||||||
|
|
|
|
|
|
|
|
||
ɫɥɭɱɚɟ ɬɨɱɤɭ E |
4 ɜ ɤɨɬɨɪɨɣ ɧɚɯɨɞɢɬɫɹ ɜɟɫɶ ɫɩɟɤɬɪ ɦɚɬɪɢɰɵ B ɜ |
||||||||
|
|
|
|
|
|
|
|
|
ɬɨɱɤɭ E 0 ɜ ɤɨɬɨɪɨɣ ɧɚɯɨɞɢɬɫɹ ɫɩɟɤɬɪ ɦɚɬɪɢɰɵ B Ɍɚɤɢɦ ɨɛɪɚ
ɡɨɦ ɫɤɨɪɨɫɬɶ ɫɯɨɞɢɦɨɫɬɢ ɪɹɞɚ ɫ ɦɚɬɪɢɰɟɣ
|
Ɋɟɲɟɧɢɟ |
ɜ ɞɚɧɧɨɦ ɫɥɭɱɚɟ ɨɱɟɧɶ ɜɵɫɨɤɚɹ ɬ ɤ U(B) 0 |
ɋɅȺɍ ɫ ɬɨɱɧɨɫɬɶɸ ɞɨ ɦɚɲɢɧɧɨɣ ɤɨɧɫɬɚɧɬɵ ɞɨɫɬɢɝɚɟɬɫɹ ɡɚ m 2 ɢɬɟɪɚɰɢɢ Ɋɟɲɟɧɢɟ ɬɨɣ ɠɟ ɡɚɞɚɱɢ ɦɟɬɨɞɚɦɢ əɤɨɛɢ ɢ Ɂɟɣɞɟ ɥɹ ɬɪɟɛɭɟɬ ɝɨɪɚɡɞɨ ɛɨɥɶɲɟɝɨ ɤɨɥɢɱɟɫɬɜɚ ɢɬɟɪɚɰɢɣ - m 48 ɢ m 23 ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ Ⱦɥɹ ɦɟɬɨɞɚ əɤɨɛɢ ɩɪɢɦɟɧɟɧɢɟ Ɉɋɉ ɧɟ ɞɚɫɬ ɭɥɭɱɲɟɧɢɹ ɫɯɨɞɢɦɨɫɬɢ ɬ ɤ ɰɟɧɬɪ ɫɩɟɤɬɪɚ ɢ ɬɚɤ ɧɚɯɨɞɢɬɫɹ ɜ
ɬɨɱɤɟ 0 ɢ ɨɩɬɢɦɚɥɶɧɵɣ ɩɚɪɚɦɟɬɪ k0 |
|
Y1 Y2 |
0 Ⱦɥɹ ɦɟɬɨɞɚ ɠɟ |
|
|||
|
2 |
|
Ɂɟɣɞɟɥɹ ɫɩɟɤɬɪ ɨɩɟɪɚɬɨɪɚ ɨɬɥɢɱɚɟɬɫɹ ɨɬ ɫɩɟɤɬɪɚ ɦɚɬɪɢɰɵ (5 ɢ ɢɫɩɨɥɶɡɨɜɚɧɢɟ ɦɟɬɨɞɚ Ɂɟɣɞɟɥɹ-Ɉɋɉ ɫ ɨɩɬɢɦɚɥɶɧɵɦ ɩɚ ɪɚɦɟɬɪɨɦ k0 0.076 ɬ ɟ ɪɹɞɚ ɫ ɨɩɟɪɚɬɨɪɨɦ
49
ɩɪɢɜɨɞɢɬ ɤ ɭɦɟɧɶɲɟɧɢɸ ɬɪɟɛɭɟɦɨɝɨ ɤɨɥɢɱɟɫɬɜɚ ɢɬɟɪɚ ɰɢɣ – m 15.
ɉɭɫɬɶ ɪɚɫɫɦɨɬɪɟɧɧɚɹ ɦɚɬɪɢɰɚ ɩɪɨɞɨɥɠɟɧɚ ɧɚ ɛɨɥɶɲɭɸ ɬɪɟɯ ɞɢɚɝɨɧɚɥɶɧɭɸ ɦɚɬɪɢɰɭ ɫ n 100 ɢ ɬɚɤɢɦɢ ɠɟ ɷɥɟɦɟɧɬɚɦɢ ɬ ɟ ɧɚ ɝɥɚɜɧɨɣ ɞɢɚɝɨɧɚɥɢ ɱɟɪɟɞɭɸɬɫɹ ɡɧɚɱɟɧɢɹ 7 ɢ 3 ɚ ɧɚ ɞɜɭɯ ɫɨɫɟɞɧɢɯ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ 4 ɢ 1 ɋɩɟɤɬɪ ɢɫɯɨɞɧɨɣ ɦɚɬɪɢɰɵ ɫɭɳɟɫɬɜɟɧɧɨ ɬɪɚɧɫɮɨɪɦɢɪɭɟɬɫɹ ɢɡ ɬɨɱɤɢ ɜ ɩɪɨɬɹɠɟɧɧɭɸ ɨɛɥɚɫɬɶ ɧɚ ɤɨɦɩɥɟɤɫ ɧɨɣ ɩɥɨɫɤɨɫɬɢ ɧɨ ɩɪɢ ɷɬɨɦ ɡɧɚɱɟɧɢɟ ɨɩɬɢɦɚɥɶɧɨɝɨ ɩɚɪɚɦɟɬɪɚ ɩɨɥɭɱɟɧɧɨɝɨ ɩɨ ɮɨɪɦɭɥɟ ɫ ɭɱɚɫɬɢɟɦ ɦɢɧɢɦɚɥɶɧɨɝɨ ɢ ɦɚɤɫɢɦɚɥɶɧɨɝɨ ɩɨ ɦɨɞɭɥɸ ɫɨɛɫɬɜɟɧɧɨɝɨ ɱɢɫɥɚ ɦɚɬɪɢɰɵ Bɨɫɬɚɟɬɫɹ ɧɟɢɡɦɟɧɧɵɦ k0 4 ɗɬɨ ɫɩɪɚɜɟɞɥɢɜɨ ɞɥɹ ɥɸ ɛɨɣ ɬɪɟɯɞɢɚɝɨɧɚɥɶɧɨɣ ɦɚɬɪɢɰɵ ɩɨɥɭɱɟɧɧɨɣ ɬɚɤɢɦ ɩɟɪɢɨɞɢɱɟ ɫɤɢɦ ɩɪɨɞɨɥɠɟɧɢɟɦ ɢɡ ɦɚɥɨɣ ɦɚɬɪɢɰɵ Ɉɞɧɚɤɨ ɷɬɨ ɡɧɚɱɟɧɢɟ k0 ɜɫɟ ɠɟ ɩɪɢɛɥɢɠɟɧɧɨɟ ɜ ɫɢɥɭ ɬɨɝɨ ɱɬɨ ɦɚɬɪɢɰɚ ɧɟ ɹɜɥɹɟɬɫɹ ɩɨɥɨ ɠɢɬɟɥɶɧɨ ɨɩɪɟɞɟɥɟɧɧɨɣ ɢ ɞɪɭɝɢɟ ɤɨɦɩɥɟɤɫɧɵɟ ɫɨɛɫɬɜɟɧɧɵɟ ɱɢɫɥɚ ɜɵɯɨɞɹɬ ɡɚ ɩɪɟɞɟɥɵ ɤɪɭɝɚ ɧɚɬɹɧɭɬɨɝɨ ɧɚ [Emin ,Emax ] ɤɚɤ ɧɚ ɞɢɚ ɦɟɬɪ Ɉɩɵɬɧɵɦ ɩɭɬɟɦ ɞɥɹ ɫɪɚɜɧɢɬɟɥɶɧɨ ɦɚɥɵɯ ɦɚɬɪɢɰ ɫ n 10 ɡɧɚɱɟɧɢɟ ɨɩɬɢɦɚɥɶɧɨɝɨ ɩɚɪɚɦɟɬɪɚ ɦɨɠɧɨ ɭɬɨɱɧɢɬɶ ɞɨ k0 5.9 ɢ ɷɬɨ ɡɧɚɱɟɧɢɟ ɨɫɬɚɟɬɫɹ ɩɪɚɤɬɢɱɟɫɤɢ ɧɟɢɡɦɟɧɧɵɦ ɞɥɹ ɜɫɟɯ ɛɨɥɶɲɢɯ ɦɚɬɪɢɰ ɬɚɤɨɝɨ ɜɢɞɚ Ⱦɥɹ ɩɚɪɚɦɟɬɪɨɜ k0 4 ɢ k0 5.9 ɢ ɬɨɱɧɨɫɬɢ
ɪɟɲɟɧɢɹ H |
10 5 ɩɨɥɭɱɚɟɦ ɫɨɨɬɜɟɬɫɬɜɟɧɧɨ ɱɢɫɥɨ ɬɪɟɛɭɟɦɵɯ ɢɬɟ |
ɪɚɰɢɣ m |
129 ɢ m 46 . ȼɩɟɱɚɬɥɹɸɳɢɣ ɪɟɡɭɥɶɬɚɬ ɞɥɹ ɞɚɧɧɨɣ ɡɚ |
ɞɚɱɢ ɩɪɢɧɨɫɢɬ ɦɟɬɨɞ Ɂɟɣɞɟɥɹ-Ɉɋɉ ȿɫɥɢ ɞɥɹ ɨɛɵɱɧɨɝɨ ɦɟɬɨɞɚ Ɂɟɣɞɟɥɹ ɱɢɫɥɨ ɢɬɟɪɚɰɢɣ m 190 ɬɨ ɫ ɩɪɢɦɟɧɟɧɢɟɦ Ɉɋɉ ɩɪɢ k0 0.17 ɱɢɫɥɨ ɬɪɟɛɭɟɦɵɯ ɢɬɟɪɚɰɢɣ ɫɧɢɠɚɟɬɫɹ ɞɨ m 6 !
Ʉɨɧɟɱɧɨ ɡɚɞɚɱɚ ɨɩɪɟɞɟɥɟɧɢɹ ɫɩɟɤɬɪɚ ɦɚɬɪɢɰɵ ɜ ɨɛɳɟɦ ɫɥɭɱɚɟ ɧɢɱɟɦ ɧɟ ɩɪɨɳɟ ɡɚɞɚɱɢ ɪɟɲɟɧɢɹ ɋɅȺɍ ɩɪɹɦɵɦɢ ɦɟɬɨɞɚɦɢ Ɉɞ ɧɚɤɨ ɞɥɹ ɪɹɞɚ ɦɚɬɪɢɰ ɩɪɢɛɥɢɠɟɧɧɨɟ ɡɧɚɱɟɧɢɟ ɨɩɬɢɦɚɥɶɧɨɝɨ ɩɚ ɪɚɦɟɬɪɚ k0 ɞɥɹ ɦɟɬɨɞɚ Ɉɋɉ ɜ ɩɪɢɦɟɧɟɧɢɢ ɤ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢɧɚɯɨɞɢɬɫɹ ɜɟɫɶɦɚ ɩɪɨɫɬɨ ɱɟɪɟɡ ɟɺ ɤɨɷɮɮɢɰɢɟɧ ɬɵ ɇɚɩɪɢɦɟɪ ɞɥɹ ɛɨɥɶɲɨɣ ɬɪɟɯɞɢɚɝɨɧɚɥɶɧɨɣ ɦɚɬɪɢɰɵ ɫ ɞɜɭɦɹ ɩɨɫɬɨɹɧɧɵɦɢ ɞɢɚɝɨɧɚɥɹɦɢ ɜɨɡɥɟ ɝɥɚɜɧɨɣ ɢ ɫ ɱɟɪɟɞɭɸɳɢɦɢɫɹ ɡɧɚ
50
ɱɟɧɢɹɦɢ a ɢ b ɤɨɷɮɮɢɰɢɟɧɬɨɜ ɧɚ ɝɥɚɜɧɨɣ ɞɢɚɝɨɧɚɥɢ Ⱦɥɹ ɬɚɤɨɣ ɦɚɬɪɢɰɵ A ɜ ɡɧɚɱɟɧɢɟ ɨɩɬɢɦɚɥɶɧɨɝɨ ɩɚɪɚɦɟɬɪɚ ɜ ɫɪɚɜɧɨ k0 (a b)2 1 ɢ ɟɫɥɢ A – ɩɨɥɨɠɢɬɟɥɶɧɨ ɨɩɪɟɞɟɥɟɧɧɚɹ ɦɚɬɪɢɰɚ ɬɨ ɷɬɨ ɡɧɚɱɟɧɢɟ ɬɨɱɧɨɟ ɗɬɨ ɧɟ ɡɧɚɱɢɬ ɱɬɨ ɞɥɹ ɥɸɛɨɣ ɦɚɬɪɢɰɵ ɬɚɤɨɝɨ ɬɢɩɚ ɦɨɠɧɨ ɩɨɫɬɪɨɢɬɶ ɫɯɨɞɹɳɢɣɫɹ ɢɬɟɪɚɰɢɨɧɧɵɣ ɩɪɨɰɟɫɫ ɧɨ ɟɫɥɢ ɦɨɠɧɨ ɞɨɛɢɬɶɫɹ ɫɯɨɞɢɦɨɫɬɢ ɬɨ ɩɪɢ ɬɚɤɨɦ k k0 ɦɟɬɨɞ ɫɯɨɞɢɬɫɹ
Ʉɪɨɦɟ ɬɨɝɨ ɞɥɹ ɮɢɡɢɱɟɫɤɢɯ ɢ ɬɟɯɧɢɱɟɫɤɢɯ ɡɚɞɚɱ ɨɛɥɚɫɬɶ ɥɨ ɤɚɥɢɡɚɰɢɢ ɫɩɟɤɬɪɚ ɨɩɟɪɚɬɨɪɚ ɱɚɫɬɨ ɢɡɜɟɫɬɧɚ ɬ ɤ ɨɧɚ ɫɨɨɬɜɟɬɫɬɜɭ ɟɬ ɮɢɡɢɱɟɫɤɢ ɧɟɪɟɝɭɥɹɪɧɵɦ ɢ ɪɟɡɨɧɚɧɫɧɵɦ ɪɟɲɟɧɢɹɦ
ɉɪɟɨɛɪɚɡɨɜɚɧɢɟ ɨɩɟɪɚɬɨɪɚ ɦɨɠɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɜ ɭɫ ɥɨɜɢɹɯ ɧɟɩɨɥɧɨɣ ɢɧɮɨɪɦɚɰɢɢ ɨɛ ɟɝɨ ɫɩɟɤɬɪɟ Ɍɚɤ ɧɚɩɪɢɦɟɪ ɟɫɥɢ ɢɡɜɟɫɬɧɚ ɜ ɬɨɱɧɨɫɬɢ ɬɨɥɶɤɨ ɨɞɧɚ ɝɪɚɧɢɰɚ ɜɟɳɟɫɬɜɟɧɧɨɝɨ ɫɩɟɤɬɪɚ Ȼɨɥɟɟ ɨɩɪɟɞɟɥɟɧɧɨ ɩɭɫɬɶ ɢɡɜɟɫɬɧɨ ɱɬɨ ɫɨɛɫɬɜɟɧɧɵɟ ɱɢɫɥɚ EQ ɧɚ
ɯɨɞɹɬɫɹ ɧɚ ɢɧɬɟɪɜɚɥɟ > M ,m@ ɢ ɡɧɚɱɟɧɢɟ M t1 ɢɡɜɟɫɬɧɨ ɬɨɱɧɨ ɚ ɞɥɹ m ɢɡɜɟɫɬɧɨ ɥɢɲɶ ɱɬɨ m 0,1 Ɍ ɤ ɞɥɹ ɞɚɧɧɨɝɨ ɫɥɭɱɚɹ U(EQ ) t1 ɬɨ ɪɹɞ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɪɚɫɯɨɞɢɬɫɹ ɧɨ ɜ ɫɢɥɭ ɬɨɝɨ ɱɬɨ 1 :B ɦɨɠɧɨ ɩɨɫɬɪɨɢɬɶ ɫɯɨɞɹɳɢɣɫɹ ɪɹɞ Ⱦɟɣɫɬɜɢɬɟɥɶɧɨ ɩɪɢɧɢ
ɦɚɹ k |
M ɩɨɥɭɱɚɟɦ ɫɯɨɞɹɳɢɣɫɹ ɪɹɞ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɞɥɹ ɨɩɟ |
||||
|
|
|
ª |
m M º |
|
ɪɚɬɨɪɚ B ɫɩɟɤɬɪ ɤɨɬɨɪɨɝɨ ɥɟɠɢɬ ɧɚ ɢɧɬɟɪɜɚɥɟ «0, |
|
» ɩɪɢɱɟɦ |
|||
|
|
|
¬ |
1 M ¼ |
|
|
m M |
|
|
|
|
|
|
1 ɬ ɟ U(EQ ) 1 Ɇɨɠɧɨ ɩɨɤɚɡɚɬɶ ɬɚɤɠɟ ɱɬɨ ɜ ɭɫɥɨɜɢɹɯ |
|||
|
1 M |
||||
|
|
|
|
|
|
ɧɟɨɩɪɟɞɟɥɟɧɧɨɫɬɢ ɞɚɧɧɨɣ ɡɚɞɚɱɢ 0 m 1 |
ɥɭɱɲɢɣ ɪɟɡɭɥɶɬɚɬ ɞɚɫɬ |
k M / 2.
ȿɫɥɢ ɞɚɠɟ ɩɪɢɯɨɞɢɬɫɹ ɞɟɬɚɥɶɧɨ ɢɫɫɥɟɞɨɜɚɬɶ ɫɩɟɤɬɪ ɡɚɞɚɱɢ ɞɥɹ ɩɨɫɬɪɨɟɧɢɹ ɛɵɫɬɪɨ ɫɯɨɞɹɳɟɝɨɫɹ ɢɬɟɪɚɰɢɨɧɧɨɝɨ ɩɪɨɰɟɫɫɚ ɬɨ ɨɞ ɧɚɠɞɵ ɟɝɨ ɩɨɫɬɪɨɢɜ ɦɨɠɧɨ ɡɚɬɟɦ ɦɧɨɝɨɤɪɚɬɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɞɥɹ ɪɚɫɱɟɬɨɜ ɫ ɪɚɡɥɢɱɧɵɦɢ ɢɫɬɨɱɧɢɤɚɦɢ - ɩɪɚɜɵɦɢ ɱɚɫɬɹɦɢ b .
ɉɪɟɢɦɭɳɟɫɬɜɚ ɠɟ ɛɵɫɬɪɨ ɫɯɨɞɹɳɢɯɫɹ ɢɬɟɪɚɰɢɨɧɧɵɯ ɩɪɨɰɟɫ ɫɨɜ ɩɟɪɟɞ ɩɪɹɦɵɦɢ ɦɟɬɨɞɚɦɢ ɢɡɜɟɫɬɧɵ ɗɬɨ