
численные методыА.Б. САМОХИН, В.В. ЧЕРДЫНЦЕВ, А.А. ВОРОНЦОВ
.pdf21
ɬɨ ɫɤɨɪɨɫɬɶ ɫɯɨɞɢɦɨɫɬɢ ɢɬɟɪɚɰɢɨɧɧɨɝɨ ɩɪɨɰɟɫɫɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨɤɚɡɚɬɟɥɟɦ r ɉɪɢ r 1 ɫɤɨɪɨɫɬɶ ɫɯɨɞɢɦɨɫɬɢ ɥɢɧɟɣɧɚɹ ɩɪɢ r 2 – ɤɜɚɞɪɚɬɢɱɧɚɹ ɩɪɢ 1 r 2 — ɫɜɟɪɯɥɢɧɟɣɧɚɹ ȿɫɥɢ ɭɫɬɚɧɚɜɥɢɜɚɟɬɫɹ ɩɪɢ n o f ɬɨ ɫɤɨɪɨɫɬɶ ɫɯɨɞɢɦɨɫɬɢ ɧɚɡɵɜɚɟɬɫɹ ɚɫɢɦɩɬɨɬɢɱɟɫɤɨɣ
ȼ ɫɥɭɱɚɟ ɦɟɬɨɞɚ ɩɪɨɫɬɵɯ ɢɬɟɪɚɰɢɣ
| x x* | | I(x ) I(x* ) |d M | x x* | ɢɥɢ 'x d q'x ,
n 1 n 1 n n 1 n
ɬɨ ɟɫɬɶ ɫɤɨɪɨɫɬɶ ɫɯɨɞɢɦɨɫɬɢ ɫɨ ɡɧɚɦɟɧɚɬɟɥɟɦ q M1 ɩɨ ɦɟɧɶ
ɲɟɣ ɦɟɪɟ ɥɢɧɟɣɧɚɹ ɨɞɧɚɤɨ ɨɧɚ ɦɨɠɟɬ ɛɵɬɶ ɜɵɲɟ ɜ ɤɨɧɤɪɟɬɧɨɣ ɪɟɚɥɢɡɚɰɢɢ Ɂɚɦɟɬɢɦ ɱɬɨ ɤɨɧɬɪɨɥɢɪɭɟɦɵɟ ɜ ɩɪɨɰɟɫɫɟ ɜɵɱɢɫɥɟ ɧɢɣ ɜɟɥɢɱɢɧɵ 'xn 1 ɢ 'xn ɜ ɨɛɳɟɦ ɫɥɭɱɚɟ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ
ɬɚɤɠɟ ɫɜɹɡɚɧɵ ɦɟɠɞɭ ɫɨɛɨɣ ɜ ɩɟɪɜɨɦ ɩɪɢɛɥɢɠɟɧɢɢ ɚɧɚɥɨɝɢɱɧɵɦ ɧɟɪɚɜɟɧɫɬɜɨɦ
| 'xn 1 | I(xn ) I(xn 1) |d q'xn . |
(3.4.2) |
ɇɟɫɦɨɬɪɹ ɧɚ ɫɯɨɠɟɫɬɶ ɜɵɪɚɠɟɧɢɣ ɞɥɹ ɦɟɬɨɞɚ ɯɨɪɞ ɢ ɫɟɤɭɳɢɯ ɫɤɨɪɨɫɬɶ ɢɯ ɫɯɨɞɢɦɨɫɬɢ ɪɚɡɥɢɱɧɚ Ɍɚɤ ɞɥɹ ɦɟɬɨɞɚ ɯɨɪɞ ɩɨɥɭɱɢɦ
ɪɚɡɥɚɝɚɹ ɜɵɪɚɠɟɧɢɟ ɞɥɹ I(x) ɜ ɬɨɱɤɟ x* ɜ ɪɹɞ Ɍɟɣɥɨɪɚ ɢ ɨɝɪɚɧɢ ɱɢɜɚɹɫɶ ɬɪɟɦɹ ɫɥɚɝɚɟɦɵɦɢ
|
|
|
xn 1 x* |
xn x* |
|
|
|
|
|
|
|||||
|
|
* |
c |
* |
)(xn |
* |
|
cc |
* |
)(xn |
|
* |
|
|
|
|
|
f (x |
) f (x |
x ) f |
(x |
|
x ) / 2 |
xn c . |
|
||||||
f c(x* ) xn c f cc(xn )((xn x* )2 (c x* )2 ) / 2 |
|
||||||||||||||
|
|
|
|||||||||||||
ɍɱɢɬɵɜɚɹ ɱɬɨ f (x* ) { 0 ɫɨɤɪɚɳɚɹ ɜ ɱɢɫɥɢɬɟɥɟ ɢ ɡɧɚɦɟɧɚɬɟɥɟ |
|||||||||||||||
c |
* |
)(xn c) ɢ ɪɚɡɥɚɝɚɹ ɡɧɚɦɟɧɚɬɟɥɶ ɜ ɪɹɞ ɩɨɥɭɱɢɦ |
|
||||||||||||
f (x |
|
|
|||||||||||||
|
|
|
|
|
|
|
cc |
|
|
|
|
|
|
|
|
|
|
|
xn 1 |
x* |
|
f (x) |
(xn |
x* )(c x* ) . |
|
(3.4.3) |
|||||
|
|
|
|
2 f c |
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Ɉɰɟɧɤɚ ɫ ɭɱɟɬɨɦ ɬɨɝɨ ɱɬɨ ɪɚɫɫɬɨɹɧɢɟ ɦɟɠɞɭ ɬɨɱɤɚɦɢ x* |
|||||||||||||||
ɢ c ɦɟɧɶɲɟ ɞɥɢɧɵ ɢɧɬɟɪɜɚɥɚ ɢɡɨɥɹɰɢɢ ɞɚɟɬ |
|
|
|||||||||||||
|
|
|
| x |
|
x* |
|d |
M 2 |
(b a) | (x |
|
x* ) | , |
|
(3.4.4) |
|||
|
|
|
|
|
|
|
|||||||||
|
|
|
n 1 |
|
|
2M1 |
|
|
n |
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɬɨ ɟɫɬɶ ɫɤɨɪɨɫɬɶ ɫɯɨɞɢɦɨɫɬɢ ɥɢɧɟɣɧɚɹ

22
ȼ ɦɟɬɨɞɟ ɫɟɤɭɳɢɯ ɜ ɜɵɪɚɠɟɧɢɢ c ɧɟɨɛɯɨɞɢɦɨ ɡɚɦɟɧɢɬɶ ɧɚ xn 1 ɉɪɟɞɩɨɥɨɠɢɦ ɱɬɨ ɫɨɨɬɧɨɲɟɧɢɟ ɞɥɹ ɫɤɨɪɨɫɬɢ ɫɯɨɞɢɦɨɫɬɢ
ɢɦɟɟɬ ɜɢɞ
* |
§ |
f |
cc |
|
t |
|
r |
|
(x) · |
* |
|
. |
|||||
xn 1 x |
¨ |
|
|
¸ |
(xn x |
) |
|
|
2 f c |
|
|||||||
|
© |
¹ |
|
|
|
|
ɉɨɞɫɬɚɜɥɹɹ ɩɨɥɭɱɟɧɧɨɟ ɢɡ ɧɟɝɨ ɜɵɪɚɠɟɧɢɟ ɞɥɹ (xn 1 x* ) ɜɩɨɥɭɱɢɦ ɞɥɹ ɫɬɟɩɟɧɟɣ r ɢ t :
r 1 1 |
ɢ r t |
1, r |1,62 , t | 0,62. |
r |
|
|
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ ɫɯɨɞɢɦɨɫɬɶ ɦɟɬɨɞɚ ɫɟɤɭɳɢɯ ɫɜɟɪɯɥɢɧɟɣɧɚɹ Ⱦɥɹ ɦɟɬɨɞɚ ɤɚɫɚɬɟɥɶɧɵɯ ɜɵɱɢɬɚɹ ɢɡ ɥɟɜɨɣ ɢ ɩɪɚɜɨɣ ɱɚɫɬɢ
ɡɧɚɱɟɧɢɟ ɤɨɪɧɹ ɢ ɪɚɡɥɚɝɚɹ ɮɭɧɤɰɢɸ ɜ ɪɹɞ ɩɨɥɭɱɢɦ
|
* |
* |
|
|
* |
c * |
* |
cc |
* |
* |
2 |
/ 2 |
|
|
|
|
f (x ) f (x )(xn x ) f (x )(xn x ) |
|
|
||||||||||
x |
x |
x x |
|
|
|
|
|
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|||||
n 1 |
|
n |
|
|
|
|
|
f c(xn ) |
|
|
|
|
|
|
Ɉɬɤɭɞɚ |
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
M 2 |
|
|
|
|
|
|
|
||
|
|
|
| x |
x* |d |
(x x* )2 |
, |
|
|
(3.4.4) |
|||||
|
|
|
|
|
|
|||||||||
|
|
|
|
n 1 |
|
|
2M1 |
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɬɨ ɟɫɬɶ ɫɯɨɞɢɦɨɫɬɶ ɦɟɬɨɞɚ ɤɚɫɚɬɟɥɶɧɵɯ ɤɜɚɞɪɚɬɢɱɧɚɹ Ɇɟɬɨɞ ɯɨɪɞ ɢɫɩɨɥɶɡɭɟɬɫɹ ɜ ɬɟɯ ɫɥɭɱɚɹɯ ɤɨɝɞɚ ɚɧɚɥɢɡ ɩɨɜɟɞɟ
ɧɢɹ ɜɬɨɪɨɣ ɩɪɨɢɡɜɨɞɧɨɣ ɡɚɬɪɭɞɧɟɧ Ɇɟɬɨɞ ɹɜɥɹɟɬɫɹ ɛɟɡɭɫɥɨɜɧɨ ɫɯɨɞɹɳɢɦɫɹ ɬɚɤ ɠɟ ɤɚɤ ɢ ɢɡɜɟɫɬɧɵɣ ɦɟɬɨɞ ɞɢɯɨɬɨɦɢɢ — ɞɟɥɟɧɢɹ ɨɬɪɟɡɤɚ ɥɨɤɚɥɢɡɚɰɢɢ ɤɨɪɧɹ ɩɨɩɨɥɚɦ Ɉɛɚ ɦɟɬɨɞɚ ɨɛɥɚɞɚɸɬ ɥɢɧɟɣ ɧɨɣ ɫɤɨɪɨɫɬɶɸ ɫɯɨɞɢɦɨɫɬɢ ɢ ɡɧɚɦɟɧɚɬɟɥɹɦɢ ɫɯɨɞɢɦɨɫɬɢ ɫɨɨɬɜɟɬ
ɫɬɜɟɧɧɨ q |
M 2 |
(b a) ɢ q (0.5,1) . |
|
||
|
2M1 |
ȿɫɥɢ ɬɨɱɤɢ ɩɟɪɟɝɢɛɚ ɧɚ ɢɧɬɟɪɜɚɥɟ ɢɡɨɥɹɰɢɢ ɧɟɬ ɬɨ ɢɫɩɨɥɶɡɭ ɟɬɫɹ ɦɟɬɨɞ ɫɟɤɭɳɢɯ ȿɫɥɢ ɜɵɱɢɫɥɟɧɢɟ ɩɟɪɜɨɣ ɩɪɨɢɡɜɨɞɧɨɣ ɧɟ ɬɪɟɛɭɟɬ ɡɧɚɱɢɬɟɥɶɧɨɝɨ ɦɚɲɢɧɧɨɝɨ ɜɪɟɦɟɧɢ ɢ ɨɬɫɭɬɫɬɜɭɟɬ ɬɨɱɤɚ ɩɟɪɟɝɢɛɚ ɬɨ ɰɟɥɟɫɨɨɛɪɚɡɧɨ ɩɪɢɦɟɧɹɬɶ ɫɚɦɵɣ ɛɵɫɬɪɵɣ ɦɟɬɨɞ ɢɡ ɪɚɫɫɦɨɬɪɟɧɧɵɯ — ɦɟɬɨɞ ɇɶɸɬɨɧɚ ɤɚɫɚɬɟɥɶɧɵɯ
Ɋɚɫɫɦɨɬɪɟɧɧɵɟ ɦɟɬɨɞɵ ɫɯɨɞɹɬɫɹ ɚɛɫɨɥɸɬɧɨ ɩɪɢ ɨɬɫɭɬɫɬɜɢɢ ɬɨɱɤɢ ɩɟɪɟɝɢɛɚ

23
3.5. ɍɫɥɨɜɢɟ ɜɵɯɨɞɚ ɢɡ ɜɵɱɢɫɥɢɬɟɥɶɧɨɝɨ ɩɪɨɰɟɫɫɚ ɩɨ ɡɚɞɚɧɧɨɣ ɬɨɱɧɨɫɬɢ ɜ ɦɟɬɨɞɚɯ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ
ɉɨɤɚɠɟɦ ɩɪɚɤɬɢɱɟɫɤɢɣ ɫɩɨɫɨɛ ɜɵɯɨɞɚ ɢɡ ɩɪɨɰɟɫɫɚ ɢɬɟɪɚɰɢɣ ɝɚɪɚɧɬɢɪɭɸɳɢɣ ɞɨɫɬɢɠɟɧɢɟ ɡɚɞɚɧɧɨɣ ɬɨɱɧɨɫɬɢ ɜɵɱɢɫɥɟɧɢɣ ɜ ɨɛɳɟɦ ɫɥɭɱɚɟ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɫɨ ɡɧɚɦɟɧɚɬɟɥɟɦ q ɋɱɢɬɚɟɬɫɹ
ɱɬɨ ɤɨɪɟɧɶ ɧɚ n -ɣ ɢɬɟɪɚɰɢɢ ɜɵɱɢɫɥɟɧ ɫ ɬɨɱɧɨɫɬɶɸ H, ɟɫɥɢ 'xn d H. Ʉɨɧɬɪɨɥɸ ɠɟ ɜ ɩɪɨɰɟɫɫɟ ɜɵɱɢɫɥɟɧɢɣ ɩɨɞɞɚɺɬɫɹ ɜɟɥɢɱɢɧɚ 'xn . ɍɫ
ɬɚɧɨɜɢɜ ɫɜɹɡɶ ɦɟɠɞɭ ɷɬɢɦɢ ɜɟɥɢɱɢɧɚɦɢ ɦɵ ɩɨɥɭɱɢɦ ɜɨɡɦɨɠɧɨɫɬɶ ɩɪɨɜɨɞɢɬɶ ɜɵɱɢɫɥɟɧɢɹ ɫ ɡɚɞɚɧɧɨɣ ɬɨɱɧɨɫɬɶɸ Ɂɚɦɟɬɢɦ ɱɬɨ
x |
x |
|
o 'x |
ɩɪɢ k o f Ⱦɚɥɟɟ ɭɱɢɬɵɜɚɹ ɧɟɪɚɜɟɧɫɬɜɨ ɬɪɟ |
|
||||
n k |
n |
|
n |
|
ɭɝɨɥɶɧɢɤɚ ɢ :
xn k xn d 'xn k 'xn k 1 ... 'xn 1 d qk 'xn qk 1'xn 1 ... q'xn
q(1 q ... qk 1)'x |
q(1 qk ) |
'x . |
|
|
|
||||
|
|
|
|
|
|
||||
n |
1 q |
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɉɪɢ k o f ɩɨɥɭɱɚɟɦ |
|
|
q |
|
|
|
|
||
|
'x |
|
|
'x . |
|
||||
|
|
|
|
|
|
||||
|
n |
1 q |
n |
|
|||||
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ ɬɪɟɛɨɜɚɧɢɟ |
|
|
|
||||||
|
|
|
1 q |
|
|
||||
|
'x |
|
|
d |
H |
(3.5.1) |
|||
|
|
|
|
||||||
|
n |
|
|
q |
|
|
|
||
|
|
|
|
|
|
|
|
|
ɨɛɟɫɩɟɱɢɜɚɟɬ ɡɚɞɚɧɧɭɸ ɬɨɱɧɨɫɬɶ ɜɵɱɢɫɥɟɧɢɣ H.
3.6. ɉɪɢɦɟɪ ɢ ɡɚɞɚɧɢɟ ɞɥɹ ɩɪɚɤɬɢɱɟɫɤɢɯ ɡɚɧɹɬɢɣ
ɉɪɢɦɟɪ ɇɚɣɬɢ ɦɟɬɨɞɨɦ ɯɨɪɞ ɤɚɫɚɬɟɥɶɧɵɯ ɢ ɩɪɨɫɬɨɣ ɢɬɟɪɚɰɢɢ ɤɨɪɧɢ ɭɪɚɜɧɟɧɢɹ
x3 Kx L 0, Ʉ=20, L=10. |
(3.6.1) |
Ʉɚɠɞɵɣ ɤɨɪɟɧɶ ɢɫɤɚɬɶ ɨɞɧɢɦ ɢɡ ɩɪɟɞɥɨɠɟɧɧɵɯ ɦɟɬɨɞɨɜ Ⱦɥɹ ɷɬɨɝɨ ɜɧɚɱɚɥɟ ɧɟɨɛɯɨɞɢɦɨ ɨɬɞɟɥɢɬɶ ɤɨɪɧɢ ɢ ɜɵɛɪɚɬɶ ɦɟɬɨɞ ɪɟɲɟ ɧɢɹ Ɋɟɤɨɦɟɧɞɭɟɦɵɣ ɩɥɚɧ ɪɟɲɟɧɢɹ ɩɪɢɜɨɞɢɬɫɹ ɧɢɠɟ.

24
1) ɇɚɯɨɞɹɬɫɹ ɩɟɪɜɚɹ ɢ ɜɬɨɪɚɹ ɩɪɨɢɡɜɨɞɧɵɟ
c |
2 |
cc |
f (x) 3x |
|
K , f (x) 6x . |
Ɉɱɟɜɢɞɧɨ ɱɬɨ ɤɨɪɧɢ ɟɫɥɢ ɨɧɢ ɫɭɳɟɫɬɜɭɸɬ ɪɚɫɩɨɥɨɠɟɧɵ ɥɟɜɟɟ ɦɟɠɞɭ ɢ ɩɪɚɜɟɟ ɬɨɱɟɤ ɷɤɫɬɪɟɦɭɦɚ ɮɭɧɤɰɢɢ
x |
r |
K |
| r2,582 . |
|
|||
1,2 |
3 |
|
|
|
|
ȼɵɛɢɪɚɸɬɫɹ ɬɪɢ ɢɧɬɟɪɜɚɥɚ >a,b@ ɢ ɩɪɨɜɟɪɹɟɬɫɹ ɭɫɥɨɜɢɟ ɧɚ ɤɚɠɞɨɦ ɢɧɬɟɪɜɚɥɟ
Ⱦɥɹ ɦɟɬɨɞɚ ɩɪɨɫɬɵɯ ɢɬɟɪɚɰɢɣ ɭɪɚɜɧɟɧɢɟ ɩɪɟɨɛɪɚɡɭɟɬɫɹ ɤ
ɢɬɟɪɚɰɢɨɧɧɨɦɭ ɜɢɞɭ x |
3 |
Kx |
L |
3 |
20x |
10 |
ɢ ɜɵɛɢɪɚɟɬɫɹ |
k 1 |
|
k |
|
|
k |
|
|
ɢɧɬɟɪɜɚɥ >a,b]= [3,5@ ɧɚ ɤɨɬɨɪɨɦ ɩɪɨɜɟɪɹɟɬɫɹ ɜɵɩɨɥɧɟɧɢɟ ɭɫɥɨɜɢɹȼ ɤɚɱɟɫɬɜɟ ɧɚɱɚɥɶɧɨɝɨ ɡɧɚɱɟɧɢɹ ɜɵɛɢɪɚɟɬɫɹ x0 3 ɬɨɝɞɚ ɩɨ
ɩɨɥɭɱɚɟɬɫɹ x1 4,12 , x2 4,52 .
Ⱦɥɹ ɦɟɬɨɞɚ ɯɨɪɞ ɜɵɛɢɪɚɟɬɫɹ ɢɧɬɟɪɜɚɥ >a,b]= [-3, @ ɢ ɩɪɨɜɟ ɪɹɟɬɫɹ f (3) f ( 3) 43 23 0 ɧɟɩɨɞɜɢɠɧɨɣ ɬɨɱɤɢ ɧɚ ɷɬɨɦ ɢɧɬɟɪɜɚɥɟ ɧɟ ɫɭɳɟɫɬɜɭɟɬ ɩɨɷɬɨɦɭ ɤɚɠɞɵɣ ɪɚɡ ɧɚɯɨɞɢɬɫɹ ɧɨɜɵɣ ɢɧɬɟɪɜɚɥ ɢɡ ɭɫɥɨɜɢɹ ɜ ɪɟɡɭɥɶɬɚɬɟ ɩɪɢɦɟɧɹɹ ɩɨɥɭɱɢɦ ɞɜɚ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɵɯ ɩɪɢɛɥɢɠɟɧɧɵɯ ɡɧɚɱɟɧɢɹ ɤɨɪɧɹ x1 0,91,
x2 0,33.
4) Ⱦɥɹ ɦɟɬɨɞɚ ɤɚɫɚɬɟɥɶɧɵɯ ɜɵɛɢɪɚɟɬɫɹ ɢɧɬɟɪɜɚɥ >a,b]= [-3,-5] ɢ ɩɪɨɜɟɪɹɟɬɫɹ ɜɵɩɨɥɧɟɧɢɟ ɭɫɥɨɜɢɹ f ( 5) f ( 3) 35 23 0,
ɜɵɛɢɪɚɟɬɫɹ |
ɧɚɱɚɥɶɧɚɹ |
ɬɨɱɤɚ |
ɢɡ |
ɭɫɥɨɜɢɹ |
|
cc |
( 35)( 30) ! 0 ɉɨ ɮɨɪɦɭɥɟ ɩɪɨɜɨɞɹɬɫɹ ɞɜɟ |
||||
f ( 5) f ( 5) |
|||||
ɢɬɟɪɚɰɢɢ x1 |
4,36 , x2 |
4, 21. |
|
|
|
ȼɚɪɢɚɧɬɵ ɞɥɹ ɩɪɚɤɬɢɱɟɫɤɢɯ ɢ ɥɚɛɨɪɚɬɨɪɧɵɯ ɡɚɧɹɬɢɣ ɩɪɢɜɟɞɟ ɧɵ ɜ ɬɚɛɥ Ⱦɥɹ ɥɚɛɨɪɚɬɨɪɧɵɯ ɡɚɧɹɬɢɣ ɫɥɟɞɭɟɬ ɝɪɚɮɢɱɟɫɤɢ ɥɨ ɤɚɥɢɡɨɜɚɬɶ ɤɨɪɧɢ ɡɚɬɟɦ ɭɬɨɱɧɢɬɶ ɤɨɪɧɢ ɡɚɞɚɧɧɵɦɢ ɦɟɬɨɞɚɦɢ ɫ
ɬɨɱɧɨɫɬɶɸ H 10 15 ɜɵɱɢɫɥɢɬɶ ɡɧɚɱɟɧɢɟ ɮɭɧɤɰɢɢ ɜ ɤɚɠɞɨɦ ɧɚɣ ɞɟɧɧɨɦ ɤɨɪɧɟ
Ɍɚɛɥɢɰɚ
ʋ |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
Ʉ |
2,3 |
5,3 |
3,2 |
4,2 |
4,5 |
3,8 |
2,8 |
2,5 |
3,4 |
3,9 |
4,3 |
4,7 |
4,9 |
5,1 |
2,5 |
4,8 |
L |
4,9 |
2,9 |
1,5 |
2,1 |
1,9 |
1,6 |
1,0 |
0,8 |
1,7 |
2,3 |
2,1 |
2,3 |
2,6 |
1,8 |
0,8 |
1,6 |
|
|
|
25 |
|
|
ɑɂɋɅȿɇɇɈȿ ɂɇɌȿȽɊɂɊɈȼȺɇɂȿ |
|
ɐɟɥɶ – |
ɩɪɢɛɥɢɠɟɧɧɨ |
ɜɵɱɢɫɥɢɬɶ ɨɩɪɟɞɟɥɟɧɧɵɣ ɢɧɬɟɝɪɚɥ |
|
b |
|
|
|
I ³ |
f (x)dx ɧɚ >a,b]. |
|
|
a |
|
|
|
ɉɨ ɬɟɨɪɟɦɟ ɇɶɸɬɨɧɚ – Ʌɟɣɛɧɢɰɚ ɨɧ ɪɚɜɟɧ ɪɚɡɧɨɫɬɢ ɜɟɪɯɧɟɝɨ |
|||
ɢ |
ɧɢɠɧɟɝɨ ɩɪɟɞɟɥɨɜ |
ɩɟɪɜɨɨɛɪɚɡɧɨɣ ɮɭɧɤɰɢɢ f (x) – |
|
F (x) |
c |
f (x)) ɇɨ ɞɥɹ ɬɚɛɥɢɱɧɵɯ ɮɭɧɤɰɢɣ ɢɯ ɩɟɪɜɨɨɛɪɚɡɧɚɹ |
|
(F (x) |
ɧɟ ɫɭɳɟɫɬɜɭɟɬ ɢ ɞɚɠɟ ɞɥɹ ɢɡɜɟɫɬɧɵɯ f (x) ɧɟ ɜɫɟɝɞɚ ɩɪɟɞɫɬɚɜɢɦɚ ɜ ɜɢɞɟ ɤɨɦɛɢɧɚɰɢɣ ɷɥɟɦɟɧɬɚɪɧɵɯ ɮɭɧɤɰɢɣ
|
ɂɧɬɟɝɪɚɥ ɝɟɨɦɟɬɪɢɱɟɫɤɢ ɪɚɜɟɧ ɩɥɨɳɚɞɢ ɤɪɢɜɨɥɢɧɟɣɧɨɣ ɬɪɚ |
ɩɟɰɢɢ |
|
~ |
ȼ ɱɢɫɥɟɧɧɵɯ ɦɟɬɨɞɚɯ ɢɧɬɟɝɪɚɥ ɢɳɟɬɫɹ ɜ ɜɢɞɟ ɤɜɚɞɪɚɬɭɪɵ |
n |
|
I |
¦ Ai f (xi ) ɇɟɨɛɯɨɞɢɦɨ ɧɚɣɬɢ ɨɩɬɢɦɚɥɶɧɵɦ ɨɛɪɚɡɨɦ Ai ɢ xi . |
|
i 0 |
Ɉɛɵɱɧɨ ɤɨɷɮɮɢɰɢɟɧɬɵ ɩɨɞɛɢɪɚɸɬɫɹ ɬɚɤ ɱɬɨɛɵ ɤɜɚɞɪɚɬɭɪɚ ɞɚ ɜɚɥɚ ɬɨɱɧɨɟ ɡɧɚɱɟɧɢɟ ɞɥɹ ɩɨɥɢɧɨɦɚ ɦɚɤɫɢɦɚɥɶɧɨ ɜɨɡɦɨɠɧɨɣ ɫɬɟɩɟɧɢ
Ɇɟɬɨɞ ɇɶɸɬɨɧɚ — Ʉɨɬɟɫɚ
ɉɪɟɞɩɨɥɚɝɚɟɬɫɹ ɱɬɨ ɡɧɚɱɟɧɢɹ ɚɪɝɭɦɟɧɬɨɜ ɢɡɜɟɫɬɧɵ ɢ ɪɚɫɩɨ ɥɨɠɟɧɵ ɪɚɜɧɨɦɟɪɧɨ Ɍɪɟɛɭɟɬɫɹ ɧɚɣɬɢ ɤɨɷɮɮɢɰɢɟɧɬɵ Ⱥ.
Ɋɚɫɫɦɨɬɪɢɦ ɢɧɬɟɪɜɚɥ [[0 ,[n ] , [i [0 hi .
ɇɚ ɢɧɬɟɪɜɚɥɟ [[0 ,[n ] ɡɚɦɟɧɢɦ f (x) ɢɧɬɟɪɩɨɥɹɰɢɨɧɧɵɦ ɩɨɥɢɧɨ ɦɨɦ Ʌɚɝɪɚɧɠɚ ɩɨɞɫɬɚɜɥɹɹ ɜ ɧɟɝɨ ɩɟɪɟɦɟɧɧɭɸ q, ɪɚɜɧɭɸ
|
[ [ |
|
§ |
b |
|
a · |
|
|
|
n i |
|
|
|
|
|
|
|
||||||||
q |
0 |
¨ h |
|
|
|
n |
|
1 |
|
n |
||
|
|
|
|
¸ ɩɨɥɭɱɢɦ Pn (q) |
¦ yi |
|
|
|
[q j]' , |
|||
h |
|
|
n |
|
|
|
|
|||||
|
|
© |
|
¹ |
i 0 |
i! n i ! j 0 |
ɝɞɟ ɲɬɪɢɯ ɨɡɧɚɱɚɟɬ ɨɬɫɭɬɫɬɜɢɟ ɜ ɩɪɨɢɡɜɟɞɟɧɢɢ ɫɨɦɧɨɠɢɬɟɥɹ ɫ j=i
[n |
[n |
Pn ([)d[ |
n |
³ |
f ([)d[ | ³ |
¦ yi Ai , |
|
[0 |
[0 |
|
i 0 |
26
ɤɨɷɮɮɢɰɢɟɧɬɵ Ⱥi ɪɚɜɧɵ
|
b |
|
a |
1 |
n i |
n |
q |
>n 1@ |
|
|
|
||
|
|
|
|
|
|
|
|||||||
Ai |
|
|
|
³ |
|
dq |
b a Hi , |
(4.1.1) |
|||||
|
n |
|
|
|
|
|
q i |
||||||
|
|
|
|
i!(n i)!0 |
|
|
|
ɝɞɟ Hi – ɧɟ ɡɚɜɢɫɹɳɢɟ ɨɬ ɢɧɬɟɪɜɚɥɚ >a,b] ɤɨɷɮɮɢɰɢɟɧɬɵ Ʉɨɬɟɫɚ
ȼ ɞɚɥɶɧɟɣɲɟɦ ɪɚɫɫɦɚɬɪɢɜɚɟɬɫɹ ɪɚɜɧɨɦɟɪɧɚɹ ɫɟɬɤɚ ɭɡɥɨɜ ɫ ɲɚ ɝɨɦ h.
Ɇɟɬɨɞ ɩɪɹɦɨɭɝɨɥɶɧɢɤɨɜ
ɋɬɟɩɟɧɶ ɩɨɥɢɧɨɦɚ n = 0 P0 ([) const Ʉɨɷɮɮɢɰɢɟɧɬ Ʉɨɬɟɫɚɩɪɢ n ɜɵɱɢɫɥɹɟɬɫɹ ɤɚɤ ɩɪɟɞɟɥɶɧɵɣ ɩɟɪɟɯɨɞ ɩɪɢ n o 0 ) ɪɚɜɟɧ ɂɧɬɟɪɜɚɥ >[0 ,[n @ ɧɟɨɩɪɟɞɟɥɟɧ ɬɚɤ ɤɚɤ ɟɫɬɶ ɬɨɥɶɤɨ ɨɞɧɚ ɬɨɱɤɚ – [0 Ƚɟɨɦɟɬɪɢɱɟɫɤɢ ɷɬɨ ɨɛɨɡɧɚɱɚɟɬ ɱɬɨ f(x) ɡɚɦɟɧɹɟɬɫɹ ɧɚ
ɢɧɬɟɪɜɚɥɟ ɤɚɤɢɦ-ɬɨ ɡɧɚɱɟɧɢɟɦ ɨɪɞɢɧɚɬɵ ȿɫɥɢ ɢɧɬɟɪɜɚɥ >a, b@ ɜɟ ɥɢɤ ɬɨ ɟɝɨ ɪɚɡɛɢɜɚɸɬ ɬɨɱɤɚɦɢ xi ɧɚ n ɢɧɬɟɪɜɚɥɨɜ ɢ ɧɚ ɤɚɠɞɨɦ
ɩɪɢɦɟɧɹɸɬ ɦɟɬɨɞ ɩɪɹɦɨɭɝɨɥɶɧɢɤɨɜ Ⱦɥɹ ɩɟɪɜɨɝɨ ɢɧɬɟɪɜɚɥɚ ɩɪɢ ɛɥɢɠɟɧɧɨɟ ɡɧɚɱɟɧɢɟ ɢɧɬɟɝɪɚɥɚ ɪɚɜɧɨ f (x)(x1 x0 ) ɝɞɟ x >x0 , x1 @.
ȼ ɤɚɱɟɫɬɜɟ x ɨɛɵɱɧɨ ɩɪɢɦɟɧɹɸɬ
x0 — ɦɟɬɨɞ ɥɟɜɵɯ ɩɪɹɦɨɭɝɨɥɶɧɢɤɨɜ x1 — ɦɟɬɨɞ ɩɪɚɜɵɯ ɩɪɹɦɨɭɝɨɥɶɧɢɤɨɜ
ɇɚ > x1, x2 @ ɩɨɜɬɨɪɹɸɬ ɬɭ ɠɟ ɩɪɨɰɟɞɭɪɭ ɢ ɪɟɡɭɥɶɬɚɬ ɫɭɦɦɢɪɭɸɬ:
|
|
|
|
|
n 1 |
|
|
|
n |
|
|
|
||
|
|
|
Iɥ ɩ |
h ¦ f (xi ) , |
Iɩ ɩ |
h ¦ f (xi ) . |
(4.2.1) |
|||||||
|
|
|
|
|
i |
0 |
|
|
i |
1 |
|
|
h ɪɚɜɧɚ |
|
ɉɨɝɪɟɲɧɨɫɬɶ |
ɦɟɬɨɞɚ |
ɧɚ ɢɧɬɟɪɜɚɥɟ |
ɞɥɢɧɨɣ |
|||||||||||
|
x h |
|
|
|
|
|
|
|
|
|
|
|
|
|
R(h) |
³ f (t)dt f (x)h , |
ɪɚɡɥɚɝɚɹ ɩɨɞɵɧɬɟɝɪɚɥɶɧɭɸ ɮɭɧɟɰɢɸ ɜ |
||||||||||||
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
ɪɹɞ Ɍɟɣɥɨɪɚ ɩɨɥɭɱɢɦ |
|
|
|
|
|
|
|
|
|
|||||
|
x h |
c |
|
|
|
|
c |
|
h2 |
|
||||
R(h) |
³ ( f (x) |
f (x)(t x))dt f (x)h |
f (x) |
|
, T >x, x h@. |
|||||||||
2 |
||||||||||||||
|
x |
|
|
|
|
|
|
|
|
|
|
|
27
Ⱥɛɫɨɥɸɬɧɚɹ ɩɨɝɪɟɲɧɨɫɬɶ ɧɚ n ɢɧɬɟɪɜɚɥɚɯ ɫɭɦɦɢɪɭɟɬɫɹ ȼ ɪɟ
|
(b a) |
|
|
|
(b a)2 |
|
|
|
|
|
|||
ɡɭɥɶɬɚɬɟ ɭɱɢɬɵɜɚɹ ɱɬɨ h |
|
ɩɨɥɭɱɢɦ |
I Iɩɪ |
d |
|
M , |
|
|
|||||
|
n |
|
|
|
2n |
|
|
|
|
|
ɝɞɟ M1 max | f c(x) |.
Ɇɟɬɨɞ ɬɪɚɩɟɰɢɣ
ɇɚ ɱɚɫɬɢɱɧɨɦ ɢɧɬɟɪɜɚɥɟ ɮɭɧɤɰɢɹ ɡɚɦɟɧɹɟɬɫɹ ɥɢɧɟɣɧɨɣ ɬ ɟ
|
1 |
|
1 |
|
1 |
1 |
|
xi , xi 1 |
|
|
n=1. H0 |
³ (q 1)dq |
, H1 |
³ qdq |
ɇɚ ɢɧɬɟɪɜɚɥɟ |
ɡɚ |
|||||
2 |
2 |
|||||||||
|
0 |
|
|
0 |
|
|
|
|||
ɦɟɧɹɹ f(x) |
ɧɚ |
P1(x) ɩɨɥɭɱɢɦ ɞɥɹ ɪɚɜɧɨɨɬɫɬɨɹɳɢɯ ɭɡɥɨɜ |
||||||||
I h( fi fi 1) / 2 . |
Ɍɨ ɟɫɬɶ ɩɥɨɳɚɞɶ ɤɪɢɜɨɥɢɧɟɣɧɨɣ ɬɪɚɩɟɰɢɢ ɡɚ |
ɦɟɧɟɧɚ ɩɥɨɳɚɞɶɸ ɩɪɹɦɨɭɝɨɥɶɧɨɣ ɬɪɚɩɟɰɢɢ.
ɋɭɦɦɢɪɭɹ ɩɨ ɜɫɟɦ ɢɧɬɟɪɜɚɥɚɦ ɩɪɢɯɨɞɢɦ ɤ ɜɵɪɚɠɟɧɢɸ
|
|
h n 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
Iɬɪ |
|
|
¦ ( fi |
fi ) ɜ ɤɨɬɨɪɨɦ ɜɧɭɬɪɟɧɧɢɟ ɨɪɞɢɧɚɬɵ ɜɫɬɪɟɱɚɟɬɫɹ |
||||||||||||||||
|
|
|||||||||||||||||||
|
|
2 i 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
ɞɜɚɠɞɵ Ɉɤɨɧɱɚɬɟɥɶɧɨ ɩɨɥɭɱɢɦ |
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
n 1 |
|
|
|
|
|
|
|||
|
|
|
|
|
|
Iɬɪ (( f (a) f (b) / 2 |
¦ |
fi )h . |
|
(4.3.1) |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
i 1 |
|
|
|
|
|
|
|
|
|
Ɇɟɠɞɭ ɦɟɬɨɞɨɦ ɬɪɚɩɟɰɢɣ ɢ ɦɟɬɨɞɨɦ ɩɪɹɦɨɭɝɨɥɶɧɢɤɨɜ ɫɭɳɟ |
|||||||||||||||||||
ɫɬɜɭɟɬ ɩɪɨɫɬɚɹ ɫɜɹɡɶ |
|
Iɥ ɩ Iɩ ɩ |
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
Iɬɪ |
|
. |
|
|
|
|
(4.3.2) |
|||||||
|
|
|
|
|
|
2 |
|
|
|
|
|
|||||||||
ɉɨɝɪɟɲɧɨɫɬɶ ɦɟɬɨɞɚ |
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
x h |
|
|
h |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
R ³ |
fdx |
( f (x) |
f (x h)) , |
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
x |
2 |
|
|
|
|
|
|
|
|
|
|
|
||
ɪɚɡɥɚɝɚɹ ɮɭɧɤɰɢɢ ɜ ɪɹɞ Ɍɟɣɥɨɪɚ ɩɨɥɭɱɢɦ |
|
|
|
|
|
|||||||||||||||
|
|
|
R(h) |
x h |
|
c |
|
1 |
f |
cc |
2 |
)dt |
||||||||
|
|
|
|
|
|
|||||||||||||||
|
|
|
³ ( f (x) f (x)(t x) |
2 |
(x)(t x) |
|
||||||||||||||
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
h |
|
|
|
|
|
h2 |
|
|
|
|
|
h3 |
||||
|
|
|
|
|
( f (x) f (x) f c(x)h |
|
f cc(x)) f cc(x) |
|
|
. |
||||||||||
|
|
|
2 |
2 |
12 |
ɉɨɝɪɟɲɧɨɫɬɶ ɧɚ ɢɧɬɟɪɜɚɥɟ ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ ɟɫɬɶ ɫɭɦɦɚ ɩɨ ɝɪɟɲɧɨɫɬɢ ɧɚ ɤɚɠɞɨɦ ɱɚɫɬɢɱɧɨɦ ɢɧɬɟɪɜɚɥɟ ɜ ɪɟɡɭɥɶɬɚɬɟ ɩɨɥɭɱɢɦ

|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
| I Iɬɪ |
|d |
(b a)3 |
M , M |
max | f cc |. Ɉɱɟɜɢɞɧɨ ɱɬɨ ɦɟɬɨɞ ɬɪɚɩɟ |
||||||||||
|
12n2 |
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||
ɰɢɣ ɬɨɱɟɧ ɞɥɹ ɥɢɧɟɣɧɨɣ ɮɭɧɤɰɢɢ |
|
|
|
|
|
|||||||||
|
|
|
Ɇɟɬɨɞ ɩɚɪɚɛɨɥ (ɦɟɬɨɞ ɋɢɦɩɫɨɧɚ |
|
|
|||||||||
ɋɬɟɩɟɧɶ ɩɨɥɢɧɨɦɚ n ɪɚɜɧɚ ɞɜɭɦ |
Ɋɚɫɫɦɨɬɪɢɦ ɢɧɬɟɪɜɚɥ ɞɥɢ |
|||||||||||||
ɧɨɣ 2h: >xi 1, xi 1 @ Ʉɨɷɮɮɢɰɢɟɧɬɵ Ʉɨɬɟɫɚ ɪɚɜɧɵ |
||||||||||||||
|
|
|
1 |
2 |
|
|
|
1 |
|
1 |
2 |
2 |
|
|
|
H0 |
³ (q 1)(q 2)dq |
, H1 |
³ q(q 2)dq |
, |
|||||||||
|
6 |
3 |
||||||||||||
|
|
|
4 |
0 |
|
|
2 |
|
2 |
0 |
|
|||
|
|
|
|
|
|
1 |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
H2 |
³ (q 1)qdq |
|
. |
|
|
||||
|
|
|
|
|
6 |
|
|
|||||||
|
|
|
|
|
|
4 |
0 |
|
|
|
|
|
ȼ ɪɟɡɭɥɶɬɚɬɟ ɤɜɚɞɪɚɬɭɪɧɚɹ ɮɨɪɦɭɥɚ ɢɦɟɟɬ ɜɢɞ
x h |
h |
|
|
³ f (t)dt |
( f (x h) 4 f (x) f (x h)) . |
||
3 |
|||
x h |
|
Ⱦɥɹ ɩɪɢɦɟɧɟɧɢɹ ɦɟɬɨɞɚ ɩɚɪɚɛɨɥ ɧɚ >a , b@ ɟɝɨ ɧɟɨɛɯɨɞɢɦɨ ɪɚɡɛɢɬɶ ɧɚ 2n ɢɧɬɟɪɜɚɥɚ ɬ ɟ ɱɢɫɥɨ ɢɧɬɟɪɜɚɥɨɜ ɞɨɥɠɧɨ ɛɵɬɶ ɱɟɬ ɧɨ ɉɪɢ ɫɭɦɦɢɪɨɜɚɧɢɢ ɩɨ ɱɚɫɬɢɱɧɵɦ ɢɧɬɟɪɜɚɥɚɦ ɜɧɭɬɪɟɧɧɢɟ ɱɟɬ ɧɵɟ ɬɨɱɤɢ ɭɞɜɚɢɜɚɸɬɫɹ ȼ ɪɟɡɭɥɶɬɚɬɟ ɨɤɨɧɱɚɬɟɥɶɧɚɹ ɮɨɪɦɭɥɚ ɢɦɟɟɬ ɜɢɞ
|
|
2 |
|
|
|
|
|
n |
|
n 1 |
|
|
|
|
|
I |
ɩɚɪ |
h(( f |
|
f |
n |
) / 2 2 |
¦ f |
i |
¦ |
f |
i |
) , |
(4.4.1) |
||
3 |
|||||||||||||||
|
|
|
|
i 1 |
i 1 |
|
|
|
|||||||
ɝɞɟ f0 f (a) , f2n |
|
f (b) . |
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|||||
Ɉɰɟɧɤɚ ɬɨɱɧɨɫɬɢ ɦɟɬɨɞɚ ɩɚɪɚɛɨɥ |
|
|
|
|
|
|
R |
xi³ 1 yf (t)dt |
h |
( f (x h) 4 f (x) f (x h)) , |
|
3 |
||||
|
xi 1 |
|
||
|
|
|
ɢ ɪɚɡɥɚɝɚɹ ɮɭɧɤɰɢɢ ɜ ɪɹɞ Ɍɟɣɥɨɪɚ ɞɨ ɱɟɬɜɟɪɬɨɣ ɩɪɨɢɡɜɨɞɧɨɣ ɩɨ ɥɭɱɢɦ
Rh5 f IV (x). 90
ɉɨɝɪɟɲɧɨɫɬɶ R ɡɚɜɢɫɢɬ ɧɟ ɨɬ ɬɪɟɬɶɟɣ ɚ ɨɬ ɱɟɬɜɟɪɬɨɣ ɩɪɨɢɡɜɨɞɧɨɣ ɬ ɟ ɩɪɢɛɥɢɠɟɧɢɟ ɢɦɟɟɬ ɩɨɜɵɲɟɧɧɭɸ ɬɨɱɧɨɫɬɶ ɢ ɮɨɪɦɭɥɚ ɩɚɪɚɛɨɥ

29
ɜɟɪɧɚ ɞɥɹ ɩɨɥɢɧɨɦɨɜ ɬɪɟɬɶɟɣ ɫɬɟɩɟɧɢ Ɉɤɨɧɱɚɬɟɥɶɧɨ ɩɨɝɪɟɲ ɧɨɫɬɶ ɢɦɟɟɬ ɜɢɞ
R |
|
|
h5n |
|
yIV (T) |
|
d |
(b a)5 |
M 4 , M 4 |
max yIV . |
|
|
|
|
|||||||
|
||||||||||
|
90 |
|
|
2880n4 |
||||||
|
|
|
|
|
|
|
>a,b@ |
|||
|
|
|
|
|
|
ɇɚ ɩɪɚɤɬɢɤɟ ɞɨɫɬɢɠɟɧɢɟ ɡɚɞɚɧɧɨɣ ɬɨɱɧɨɫɬɢ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɭ ɬɟɦ ɫɪɚɜɧɟɧɢɹ ɡɧɚɱɟɧɢɣ ɢɧɬɟɝɪɚɥɚ ɪɚɫɫɱɢɬɚɧɧɵɯ ɞɥɹ ɬɟɤɭɳɟɝɨ ɢ ɭɞɜɨɟɧɧɨɝɨ ɱɢɫɥɚ ɪɚɡɛɢɟɧɢɣ ɢɧɬɟɪɜɚɥɚ
Ʉɜɚɞɪɚɬɭɪɧɵɟ ɮɨɪɦɭɥɵ Ƚɚɭɫɫɚ
ɉɪɟɞɜɚɪɢɬɟɥɶɧɨ ɧɟɨɛɯɨɞɢɦɨ ɪɚɫɫɦɨɬɪɟɬɶ ɫɜɨɣɫɬɜɚ ɩɨɥɢɧɨɦɨɜ
Ʌɟɠɚɧɞɪɚ P (x) |
1 |
|
|
d n |
|
(x2 1)n |
— |
ɩɨɥɢɧɨɦ ɫɬɟɩɟɧɢ n, |
|||
|
|
|
|
||||||||
n |
|
2n n! |
|
d n x |
|
|
|
|
|||
|
|
|
|
|
1 |
|
|||||
x > 1,1@. ɉɨɥɢɧɨɦɵ ɨɪɬɨɝɨɧɚɥɶɧɵ ɬ ɟ |
Gn,m , |
||||||||||
³ Pn (x) Pm (x)dx |
|||||||||||
ɝɞɟ Gn, m — ɫɢɦɜɨɥ Ʉɪɨɧɟɤɟɪɚ |
|
|
1 |
|
|||||||
|
|
|
|
||||||||
ɂɦɟɸɬ n ɤɨɪɧɟɣ ɧɚ > 1, 1@ Ⱦɥɹ ɥɸɛɨɝɨ ɩɨɥɢɧɨɦɚ Qk (x): |
|||||||||||
1 |
|
|
|
|
|
|
|
|
|
|
|
³ Pn (x) Qk (x) dx |
0 ɟɫɥɢ k < n, ɬɚɤ ɤɚɤ ɩɨɥɢɧɨɦ ɫɬɟɩɟɧɢ k ɩɪɟɞ |
||||||||||
1 |
|
|
|
|
|
|
|
|
|
|
ɫɬɚɜɢɦ ɜ ɜɢɞɟ ɥɢɧɟɣɧɨɣ ɤɨɦɛɢɧɚɰɢɢ ɩɨɥɢɧɨɦɨɜ Ʌɟɠɚɧɞɪɚ ɞɨ ɫɬɟ ɩɟɧɢ k ɜɤɥɸɱɢɬɟɥɶɧɨ
ɂɫɯɨɞɢɦ ɢɡ ɮɨɪɦɭɥɵ ɨɛɳɟɝɨ ɜɢɞɚ
|
|
|
|
|
|
|
|
1 |
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
³ f (t) dt |
¦ Ai f (ti ). |
|
|
||||||
|
|
|
|
|
|
|
|
1 |
|
|
|
i 1 |
[a,b] |
|
|
||
|
Ⱦɥɹ |
ɩɪɨɢɡɜɨɥɶɧɨɝɨ |
ɨɬɪɟɡɤɚ |
ɡɚɦɟɧɚ |
ɩɟɪɟɦɟɧɧɵɯ |
||||||||||||
x |
|
a b |
|
b a |
t |
|
ɩɟɪɟɜɨɞɢɬ ɟɝɨ ɜ ɨɬɪɟɡɨɤ [ 1, 1] ɢ ɤɜɚɞɪɚɬɭɪɧɚɹ |
||||||||||
2 |
|
|
|||||||||||||||
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
ɮɨɪɦɭɥɚ Ƚɚɭɫɫɚ ɢɦɟɟɬ ɜɢɞ |
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
I |
|
|
ªb a |
n |
A f |
§ a b |
|
b a |
t |
·º . |
(4.5.1) |
||
|
|
|
|
|
|
¦ |
|||||||||||
|
|
|
|
g |
|
« |
|
¨ |
|
|
|||||||
|
|
|
|
|
|
2 |
i 1 |
i |
2 |
2 |
|
i ¸» |
|
||||
|
|
|
|
|
|
|
¬ |
|
© |
|
¹¼ |
|
ɉɨɬɪɟɛɭɟɦ ɱɬɨɛɵ ɤɜɚɞɪɚɬɭɪɧɚɹ ɮɨɪɦɭɥɚ ɛɵɥɚ ɬɨɱɧɚ ɞɥɹ ɩɨ ɥɢɧɨɦɨɜ ɦɚɤɫɢɦɚɥɶɧɨɣ ɫɬɟɩɟɧɢ 2 n 1 ɚ ɫɥɟɞɨɜɚɬɟɥɶɧɨ ɞɨɥɠɧɚ

|
|
|
|
|
|
|
30 |
ɛɵɬɶ |
ɬɨɱɧɚ ɞɥɹ |
t, …, t 2 n 1 ɋɢɫɬɟɦɚ ɭɪɚɜɧɟɧɢɣ |
|||||
n |
A tk |
1 ( 1) |
k |
|
|||
¦ |
|
ɧɟɥɢɧɟɣɧɚɹ |
|||||
|
|
|
|||||
i 1 |
i |
i |
|
k 1 |
|
|
|
|
ɂɫɩɨɥɶɡɭɟɦ ɫɜɨɣɫɬɜɨ ɩɨɥɢɧɨɦɚ Ʌɟɠɚɧɞɪɚ |
||||||
|
|
1 |
|
|
|
|
n |
|
|
³ tk Pn (t) dt |
¦ Ai tik Pn (ti ) 0 ɩɪɢ k = 0, 1, …, n – 1. |
||||
|
|
1 |
|
|
|
|
1 |
Ɋɚɜɟɧɫɬɜɨ ɢɧɬɟɝɪɚɥɚ ɧɭɥɸ ɜɨɡɦɨɠɧɨ ɟɫɥɢ ti — ɤɨɪɧɢ ɩɨɥɢ
ɧɨɦɚ Ʌɟɠɚɧɞɪɚ ɤɨɬɨɪɵɟ ɢɡɜɟɫɬɧɵ
ɉɨɥɭɱɟɧɧɵɟ ti ɩɨɞɫɬɚɜɥɹɸɬɫɹ ɜ ɩɟɪɜɵɟ n ɭɪɚɜɧɟɧɢɣ ɫɢɫɬɟɦɵ
ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɤɨɷɮɮɢɰɢɟɧɬɨɜ Ai : |
|
|
|
|||||
A ti |
A |
ti |
... A |
ti |
[1 ( 1)i ] |
|
, 0 d i d n 1. |
|
|
||||||||
1 1 |
2 |
2 |
n |
n |
i 1 |
|
||
|
|
|
|
|
|
|
Ɉɩɪɟɞɟɥɢɬɟɥɶ ɫɢɫɬɟɦɵ — ɨɩɪɟɞɟɥɢɬɟɥɶ ȼɚɧɞɟɪɦɨɧɞɚ — ɧɟ ɪɚɜɟɧ 0, ɢ ɫɢɫɬɟɦɚ ɢɦɟɟɬ ɟɞɢɧɫɬɜɟɧɧɨɟ ɪɟɲɟɧɢɟ
Ɉɰɟɧɤɚ ɬɨɱɧɨɫɬɢ ɤɜɚɞɪɚɬɭɪɧɨɣ ɮɨɪɦɭɥɵ Ƚɚɭɫɫɚ ɩɪɨɜɨɞɢɬɫɹ ɩɨ ɮɨɪɦɭɥɟ
I |
|
|
d |
(b a)2n 1 (n!)4 M 2n |
ɝɞɟ M 2n |
max f (2n) . |
Ig |
|
|||||
|
|
|||||
|
|
|
|
(2n!)3 (2n 1) |
>a,b@ |
|
|
|
|
Ɂɚɞɚɧɢɟ ɞɥɹ ɩɪɚɤɬɢɱɟɫɤɢɯ ɡɚɧɹɬɢɣ
ȼ ɩɪɚɤɬɢɱɟɫɤɨɣ ɪɚɛɨɬɟ ɢɫɫɥɟɞɭɟɬɫɹ ɫɯɨɞɢɦɨɫɬɶ ɪɚɡɥɢɱɧɵɯ ɦɟ ɬɨɞɨɜ ɜ ɡɚɜɢɫɢɦɨɫɬɢ ɨɬ n — ɱɢɫɥɚ ɬɨɱɟɤ ɪɚɡɛɢɟɧɢɹ
|
Ɋɚɫɫɦɚɬɪɢɜɚɟɬɫɹ |
ɢɧɬɟɝɪɚɥ |
|
ɜɢɞɚ |
I |
b |
x L |
dx |
ɝɞɟ |
||||||||||
|
|
³ |
|
|
|
|
|||||||||||||
|
|
|
|
|
|||||||||||||||
a |
(K L) / 2, |
|
b K L ɡɧɚɱɟɧɢɹ |
K, |
L |
a x2 x K |
|
|
|||||||||||
|
ɞɚɧɵ |
|
ɜ ɬɚɛɥ |
|
|||||||||||||||
n |
4, 6, 8 . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ɍɨɱɧɨɟ ɡɧɚɱɟɧɢɟ ɢɧɬɟɝɪɚɥɚ ɪɚɜɧɨ |
|
|
|
|
|
|
ºb |
|
|
|||||||||
|
|
ª |
1 ln(x2 |
|
|
L 1 |
|
|
|
|
x |
1 |
|
|
|
||||
|
I |
« |
x K ) |
|
2 |
|
|
arctg |
|
|
|
2 |
|
» . |
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
« |
2 |
|
|
|
K |
1 |
|
|
|
|
K 1 |
» |
|
|
|||
|
|
¬ |
|
|
|
|
|
4 |
|
|
|
|
|
|
4 |
|
¼a |
|
|