
- •Базовые термины (готово)
- •Алгоритмы
- •11.Алгоритм диагонализации матрицы линейного оператора
- •14.Метод Лагранжа приведения КФ к каноническому виду
- •15.Алгоритм решения ОЛДУ
- •Сноски
- •Теория ебанная
- •Основные бинарные операции.
- •Простейшие свойства колец:
- •Наследуемость свойств при переходе к подмножеству
- •Категорий подструктуры
- •Векторные пространства и их простейшие свойства
- •Векторное пространство(1)
- •Векторное пространство(2)
- •Простейшие свойства векторных пространств
- •Подпространства векторного пространства, критерий подпространства
- •ГДЕ БЛЯТЬ Подпространства векторного пространства????
- •Линейная оболочка, натянутая на векторы, её свойства
- •Свойства:
- •Линейная зависимость (ЛЗ) и независимость, простейшие свойства ЛЗ векторов
- •Линейно независимая (ЛНЗ) система векторов – множество векторов, из элементов которого можно образовать только тривиальные линейные комбинации.
- •Линейно зависимая система векторов - множество векторов, из элементов которого можно образовать хотя бы одну нетривиальную линейную комбинацию.
- •Простейшие свойства линейной зависимости
- •Признак ЛЗ по количеству векторов
- •Следствия:
- •Линейная эквивалентность и элементарные преобразования системы векторов
- •Элементарные преобразования системы векторов
- •Базис и ранг конечной системы векторов, свойства ранга
- •Свойства ранга конечной системы векторов
- •Система образующих и базис векторного пространства, координаты вектора
- •Размерность векторного пространства и его свойства
- •Биективные отображения алгебраических структур
- •Координатный изоморфизм векторных пространств
- •Понятие изоморфизма векторных пространств
- •Координатный изоморфизм
- •Матрица перехода, ее невырожденность и формула перехода
- •Понятия замены базиса и матрицы перехода
- •Свойства матрицы перехода
- •Матрица перехода, формула для произведения матриц перехода и ее следствия
- •Вычисление матрицы перехода:
- •Сумма и пересечение подпространств как векторые подпространства
- •Формула Грассмана
- •Прямая сумма подпространств, критерий прямой суммы
- •Прямая сумма подпространств и ее критерий
- •Скалярное произведение и его простейшие свойства
- •Простейшие свойства скалярного произведения
- •Неравенство Коши-Буняковского
- •Норма вектора, евклидова норма
- •Матрица Грама базиса, ее невырожденность
- •Матрица Грама базиса, координатная формула для скалярного произведения
- •Матрица Грама при смене базиса
- •Угол между векторами, критерий ортогональности двух ненулевых векторов
- •Система ортогональных векторов, ее линейная независимость
- •Теорема Шмидта
- •Ортогональное дополнение подпространства (ОД)
- •Свойства ортогонального дополнения
- •ОД подпространства как часть ортогонального базиса пространства
- •Разложение пространства в прямую сумму подпространства и ОД к нему
- •Линейные отображения и способы их задания
- •Матрица линейного оператора при замене базиса
- •Изоморфизм линейных операторов и матриц соответствующего размера
- •Свойства:
- •Свойства:
- •Разложение в прямую сумму инвариантных подпространств
- •Спектр линейного оператора, собственные подпространства (СП)
- •Собственное подпространство
- •Линейная независимость векторов, принадлежащих различным СП
- •Характеристический полином матрицы и его свойства
- •Характеристический полином матрицы
- •Свойства
- •Геометрическая кратность собственного числа, ее оценка сверху и снизу
- •Два определения диагонализуемого линейного оператора, их эквивалентность
- •Теорема о разложении в прямую сумму СП
- •Критерий диагонализуемости линейного оператора
- •Подобие матриц, совпадение спектров подобных матриц
- •Простейшее матричное квадратное уравнение (МКУ), количество его решений
- •Диагональность неизвестной матрицы при решении общего МКУ
- •Унитарные операторы, критерий унитарного оператора
- •Невырожденность и спектр унитарного оператора
- •Матрица унитарного оператора в ортонормированном базисе
- •Свойства:
- •Теорема Шаля о классификации плоских движений
- •Теорема Шаля о классификации плоских движений
- •Каноническая форма ортогонального оператора
- •Сопряженные операторы, их свойства
- •Самосопряженные операторы, их свойства
- •Задачи

Следствие: ( ( )) = − и ( ( )) =
Отсюда следует теорема о связи размерности пространства, ядра и образа линейного отображения:
Инвариантные подпространства, их простейшие свойства
Инвариантное подпространство относительно линейного оператора – подпространствопространства , на котором действует оператор такое, что образы векторов из , полученные под действием , принадлежат , т.е. ≤ ( ) , где ( )
означает, что ( ) Для любого оператора инвариантным всегда являются два пространства – всё
пространство и нулевое пространство.
Ядро и образ линейного оператора являются инвариантными подпространствами. Сумма и пересечение инвариантных подпространств также являются инвариантными
подпространствами.
Если пространство , на котором действует линейный оператор, может быть разложено в прямую сумму двух инвариантных подпространств, то найдется базис , в котором матрица этого оператора – блочно-диагональная.
Разложение в прямую сумму инвариантных подпространств
Спектр линейного оператора, собственные подпространства (СП)
Спектр линейного оператора – множество элементов поля, над которым задано пространство , обозначаемое ( ), для каждого элемента λ которого найдется
\{0} такой, что ( ) = λ , где - собственный вектор, отвечающий собственному числу λ.
Формализация: ( ) = {λ | \{0} ( ) = λ }
Геометрический смысл собственных векторов: под действием оператора собственный вектор переходит в коллинеарный ему вектор, причем коэффициент растяжения (сжатия) равен собственному числу соответствующему этому собственному вектору.
Собственное подпространство
Собственное подпространство, отвечающее собственному числу λ оператора – множество всех собственных векторов, отвечающих λ, дополненное нулевым вектором, обозначаемое как (λ).
Формализация: (λ) = { | ( ) = λ }(λ) ≤ , где ( )
(λ) = ( − λ · ), где = ( )