
Добавил:
Вуз:
Предмет:
Файл:
МатАн Экзамен Теория.pdf
X
- •Теоретические вопросы
- •1. Предел последовательности. Ограниченность, единственность, бесконечные пределы
- •Теорема 1. Ограниченность
- •Теорема 2. Единственность
- •Теорема 3. Бесконечные пределы
- •2. Свойства пределов, связанные с неравенствами
- •Теорема 1. Отделимость от нуля
- •Теорема 2
- •Теорема 3
- •Теорема 4. О двух милиционерах
- •3. Бесконечно малые последовательности и их свойства
- •Теорема 1
- •Теорема 2
- •Теорема 3
- •Следствия
- •4. Арифметические свойства пределов последовательностей
- •Теорема 1
- •Теорема 2
- •Теорема 3
- •5. Неравенство Бернулли, предел геометрической прогрессии
- •Теорема 1. Неравенство Бернулли
- •Теорема 2
- •Следствия
- •6. Супремумы и инфимумы. Их свойства
- •Теорема 1
- •Теорема 2
- •Утверждения
- •Утверждение 1
- •Утверждение 2
- •7. Существование супремумов и инфимумов
- •Утверждение
- •Теорема
- •8. Монотонные последовательности
- •Определение
- •Теорема 1
- •Теорема 2. Принцип вложенных отрезков
- •Следствие
- •10. Частичные пределы
- •Определение
- •Утверждение 1
- •Утверждение 2
- •Теорема 1
- •Теорема 2
- •11. Принцип компактности
- •Теорема 1. Больцано-Вейерштрасса
- •Следствие
- •12. Фундаментальные последовательности. Критерий Коши
- •Определение
- •Утверждение
- •Теорема 1
- •Вывод
- •13. Верхний и нижний пределы последовательности. Связь с частичными пределами и сходимостью
- •Определение
- •Утверждения
- •Утверждение 1
- •Утверждение 2
- •Утверждение 3
- •Теорема
- •Следствие
- •14. Внутренние, изолированные и предельные точки. Открытые и замкнутые мн-ва
- •Определение 1
- •Определение 2
- •Определение 3
- •Определение 4
- •Определение 5
- •Утверждение
- •Теорема 1
- •Теорема 2
- •Следствие
- •15. Предел функции
- •Определение 1. Предел по Коши
- •Замечания
- •Определение 2. Предел по Гейне
- •Следствие. Арифметические св-ва
- •Теорема 1
- •Теорема 2. Отделимость от нуля
- •16. Односторонние пределы функции, бесконечные пределы, пределы на бесконечности.
- •Определение 1. Бесконечные пределы
- •Определение 2. Односторонние пределы
- •Определение 3. Пределы на бесконечности
- •17. Непрерывность функции, типы точек разрыва
- •Определение 1
- •Определение 2
- •Утверждения
- •Утверждение 1
- •Утверждение 2
- •Классификация
- •Теорема
- •18. Две теоремы Больцано-Коши (о промежуточных значениях непрерывной функции)
- •Теорема 1. Больцано-Коши
- •Замечания
- •Контрпример
- •Теорема 2. Больцано-Коши(о промежуточных значениях)
- •19. Непрерывность сложной и обратной функции.
- •Теорема 1. О сложной функции
- •Теорема 2. О обратной функции
- •20. Показательная функция(доопределение на все вещественные числа), ее непрерывность.
- •Определение.
- •Лемма.
- •Теорема 2.
- •21. Первый замечательный предел
- •22. Второй замечательный предел
- •Теорема 1
- •Следствие
- •Утверждение
- •23. Бесконечно большие и бесконечно малые величины, эквивалентность, символы “O” и “o”.
- •24. Две теоремы Вейерштрасса(о максимумах и минимумах непрерывной функции).
- •Теорема 1
- •Теорема 2
- •25. Равномерная непрерывность функции, теорема Кантора, модуль непрерывности.
- •Теорема 1 (Кантор)
- •26. Производная функции. Односторонние производные. Геометрический смысл производной. Связь с непрерывностью.
- •27. Арифметические свойства производной и их доказательство.
- •Утверждение 1
- •Утверждение 2
- •Утверждение 3
- •28. Теоремы о производной сложной и обратной функции
- •Теорема 1
- •Теорема 2
- •29. Гиперболические функции, их свойства и производные.
- •Свойства:
- •Производные:
- •30. Обратные гиперболические функции и их производные.
- •31. Производные высших порядков, формула Лейбница
- •Общее обозначение производной порядка n-1:
- •Теорема (формула Лейбница)
- •Формула Лейбница частный случай
- •32. Производные параметрически заданной функции
- •Теорема
- •33. Теорема Ферма (необходимое условие экстремума) и Ролля
- •Определение
- •Теорема Ферма (необходимое условие экстремума)
- •Теорема Ролля
- •34. Теоремы Лагранжа и Коши (о конечных приращениях)
- •Теорема 1 (Лагранж, о конечных приращениях)
- •Теорема 2 (Коши, о конечных приращениях)
- •35. Правило Лопиталя для бесконечно малых
- •Теорема 1
- •Теорема 2
- •36. Правило Лопиталя для бесконечно больших
- •Лемма (для последовательностей)
- •Теорема 1
- •Теорема 2
- •37. Монотонность и экстремумы функции. Необходимые и достаточные условия экстремума
- •Теорема 1
- •Теорема 2
- •Следствие (достаточное условие экстремума)
- •Теорема 3
- •38. Выпуклость функции и ее связь с производными
- •Определение
- •Теорема 1
- •Теорема 2
- •Теорема 3
- •Замечание
- •39. Представление многочлена в форму Тейлора, связь с кратностью корня.
- •Определение
- •Утверждение
- •Теорема 1
- •Определение
- •Теорема 2
- •40.Формула Тейлора для произвольной функции, остаточный член в форме Пеано и Лагранжа
- •Формула
- •Теорема 1 (остаточный член в форме Пеано)
- •Теорема 2 (остаточный член в форме Лагранжа)
- •Следствие
- •Утверждения
- •Утверждение 1
- •Утверждение 2
- •Утверждение 3
- •Утверждение 4
- •42. Дифференциалы первого и высших порядков. Запись формулы Тейлора через дифференциалы.
- •Определение 1
- •Утверждение. инвариантная форма первого дифференциала
- •Определение 2. Дифференциал второго
- •Определение 3
- •Формула Тейлора
- •43. Первообразная функция, неопределенный интеграл. Основная таблица неопределённых интегралов.
- •Определение
- •Замечание 1
- •Замечание 2
- •Теорема
- •Определение
- •Утверждение 1
- •Утверждение 2
- •Утверждение 3 (линейность)
- •Замечание
- •Замечание
Теорема 2 |
|
|
|
|
|
→∞lim = |
|
Верхняя граница — это sup ! ( ): ( ) и |
|||||||
Утверждения |
|
|
|
|
|
|
|
Утверждение 1 |
|
sup ≤ sup ; |
inf ≥ inf |
|
|||
Пусть |
, тогда |
|
|||||
Утверждение 2 |
|
α > 0. Тогда, соответственно: |
|||||
Пусть |
sup ≠ ∞ |
или |
inf ≠ ∞ и |
||||
при |
|
|
|
|
|
|
|
sup(α + β) = α · sup + β |
|
|
|||||
Утверждениеinf(α + β)3 |
= |
α · inf + β |
|
|
|||
Пусть α < 0, тогда: |
|
|
|
|
|||
sup(α + β) = α · inf + β |
|
|
|
inf(α + β) = α · sup + β
7.Существование супремумов и инфимумов
Утверждение На множестве не любое ограниченное множество имеет супремум или инфимум.
Теорема
На ограниченное сверху множество имеет конечный супремум, а любое ограниченное снизу
– конечный инфимум.
8.Монотонные последовательности
Определение
( ) возрастает, если ( ) ≥ ; убывает, если ( ) ≤
+1 +1
Теорема 1
На множестве вещественных чисел монотонная ограниченная последовательность имеет предел. При этом
|
→∞lim |
|
= sup |
|
→∞lim |
|
= inf |
Соседние файлы в предмете Математический анализ