
- •Теоретические вопросы
- •1. Предел последовательности. Ограниченность, единственность, бесконечные пределы
- •Теорема 1. Ограниченность
- •Теорема 2. Единственность
- •Теорема 3. Бесконечные пределы
- •2. Свойства пределов, связанные с неравенствами
- •Теорема 1. Отделимость от нуля
- •Теорема 2
- •Теорема 3
- •Теорема 4. О двух милиционерах
- •3. Бесконечно малые последовательности и их свойства
- •Теорема 1
- •Теорема 2
- •Теорема 3
- •Следствия
- •4. Арифметические свойства пределов последовательностей
- •Теорема 1
- •Теорема 2
- •Теорема 3
- •5. Неравенство Бернулли, предел геометрической прогрессии
- •Теорема 1. Неравенство Бернулли
- •Теорема 2
- •Следствия
- •6. Супремумы и инфимумы. Их свойства
- •Теорема 1
- •Теорема 2
- •Утверждения
- •Утверждение 1
- •Утверждение 2
- •7. Существование супремумов и инфимумов
- •Утверждение
- •Теорема
- •8. Монотонные последовательности
- •Определение
- •Теорема 1
- •Теорема 2. Принцип вложенных отрезков
- •Следствие
- •10. Частичные пределы
- •Определение
- •Утверждение 1
- •Утверждение 2
- •Теорема 1
- •Теорема 2
- •11. Принцип компактности
- •Теорема 1. Больцано-Вейерштрасса
- •Следствие
- •12. Фундаментальные последовательности. Критерий Коши
- •Определение
- •Утверждение
- •Теорема 1
- •Вывод
- •13. Верхний и нижний пределы последовательности. Связь с частичными пределами и сходимостью
- •Определение
- •Утверждения
- •Утверждение 1
- •Утверждение 2
- •Утверждение 3
- •Теорема
- •Следствие
- •14. Внутренние, изолированные и предельные точки. Открытые и замкнутые мн-ва
- •Определение 1
- •Определение 2
- •Определение 3
- •Определение 4
- •Определение 5
- •Утверждение
- •Теорема 1
- •Теорема 2
- •Следствие
- •15. Предел функции
- •Определение 1. Предел по Коши
- •Замечания
- •Определение 2. Предел по Гейне
- •Следствие. Арифметические св-ва
- •Теорема 1
- •Теорема 2. Отделимость от нуля
- •16. Односторонние пределы функции, бесконечные пределы, пределы на бесконечности.
- •Определение 1. Бесконечные пределы
- •Определение 2. Односторонние пределы
- •Определение 3. Пределы на бесконечности
- •17. Непрерывность функции, типы точек разрыва
- •Определение 1
- •Определение 2
- •Утверждения
- •Утверждение 1
- •Утверждение 2
- •Классификация
- •Теорема
- •18. Две теоремы Больцано-Коши (о промежуточных значениях непрерывной функции)
- •Теорема 1. Больцано-Коши
- •Замечания
- •Контрпример
- •Теорема 2. Больцано-Коши(о промежуточных значениях)
- •19. Непрерывность сложной и обратной функции.
- •Теорема 1. О сложной функции
- •Теорема 2. О обратной функции
- •20. Показательная функция(доопределение на все вещественные числа), ее непрерывность.
- •Определение.
- •Лемма.
- •Теорема 2.
- •21. Первый замечательный предел
- •22. Второй замечательный предел
- •Теорема 1
- •Следствие
- •Утверждение
- •23. Бесконечно большие и бесконечно малые величины, эквивалентность, символы “O” и “o”.
- •24. Две теоремы Вейерштрасса(о максимумах и минимумах непрерывной функции).
- •Теорема 1
- •Теорема 2
- •25. Равномерная непрерывность функции, теорема Кантора, модуль непрерывности.
- •Теорема 1 (Кантор)
- •26. Производная функции. Односторонние производные. Геометрический смысл производной. Связь с непрерывностью.
- •27. Арифметические свойства производной и их доказательство.
- •Утверждение 1
- •Утверждение 2
- •Утверждение 3
- •28. Теоремы о производной сложной и обратной функции
- •Теорема 1
- •Теорема 2
- •29. Гиперболические функции, их свойства и производные.
- •Свойства:
- •Производные:
- •30. Обратные гиперболические функции и их производные.
- •31. Производные высших порядков, формула Лейбница
- •Общее обозначение производной порядка n-1:
- •Теорема (формула Лейбница)
- •Формула Лейбница частный случай
- •32. Производные параметрически заданной функции
- •Теорема
- •33. Теорема Ферма (необходимое условие экстремума) и Ролля
- •Определение
- •Теорема Ферма (необходимое условие экстремума)
- •Теорема Ролля
- •34. Теоремы Лагранжа и Коши (о конечных приращениях)
- •Теорема 1 (Лагранж, о конечных приращениях)
- •Теорема 2 (Коши, о конечных приращениях)
- •35. Правило Лопиталя для бесконечно малых
- •Теорема 1
- •Теорема 2
- •36. Правило Лопиталя для бесконечно больших
- •Лемма (для последовательностей)
- •Теорема 1
- •Теорема 2
- •37. Монотонность и экстремумы функции. Необходимые и достаточные условия экстремума
- •Теорема 1
- •Теорема 2
- •Следствие (достаточное условие экстремума)
- •Теорема 3
- •38. Выпуклость функции и ее связь с производными
- •Определение
- •Теорема 1
- •Теорема 2
- •Теорема 3
- •Замечание
- •39. Представление многочлена в форму Тейлора, связь с кратностью корня.
- •Определение
- •Утверждение
- •Теорема 1
- •Определение
- •Теорема 2
- •40.Формула Тейлора для произвольной функции, остаточный член в форме Пеано и Лагранжа
- •Формула
- •Теорема 1 (остаточный член в форме Пеано)
- •Теорема 2 (остаточный член в форме Лагранжа)
- •Следствие
- •Утверждения
- •Утверждение 1
- •Утверждение 2
- •Утверждение 3
- •Утверждение 4
- •42. Дифференциалы первого и высших порядков. Запись формулы Тейлора через дифференциалы.
- •Определение 1
- •Утверждение. инвариантная форма первого дифференциала
- •Определение 2. Дифференциал второго
- •Определение 3
- •Формула Тейлора
- •43. Первообразная функция, неопределенный интеграл. Основная таблица неопределённых интегралов.
- •Определение
- •Замечание 1
- •Замечание 2
- •Теорема
- •Определение
- •Утверждение 1
- •Утверждение 2
- •Утверждение 3 (линейность)
- •Замечание
- •Замечание

Теорема 3
|
( ) |
≠ 0 |
|
lim→∞ = , ≠ 0 |
|
|
lim→∞ |
|
= |
|
|
|
||||||
Пусть |
|
|
|
и |
→ (≠ 0), → |
. Тогда |
|
|
1 |
|
|
|
1 |
|
|
|||
|
|
|
|
|
lim→∞ |
|
= |
|
|
|
||||||||
Следствие 1: Если |
|
→ , ( ) ≠ 0 |
|
,то |
|
|
|
|
|
|
|
|
lim→∞ |
|
= ∞ |
|||
|
|
|
|
|
→ (≠ 0) |
|
|
|
|
|||||||||
Следствие 2: Если |
|
|
|
и |
|
|
|
|
|
,то |
|
|
|
5.Неравенство Бернулли, предел геометрической прогрессии
Теорема 1. Неравенство Бернулли
Пусть ≥ − 1 и . Тогда (1 + ) ≥ 1 +
Теорема 2
Если > 1,то lim = + ∞
→∞
Следствия
Следствие 1: Если | | > 1,то → ∞
Следствие 2: Если | | < |
1,то → 0. (| |
1 |
| > 1 | |
1 |
| → |
+ ∞) |
∞ |
|
|
+1 |
|
|
|||||||||
Следствие 3: |
|
∞ |
|
|
1 |
. Здесь |
∞ |
|
|
|
|
∞ |
, где |
1− |
|
1−0 |
|||||
|
| | < 1 |
∑ |
|
= |
|
|
|
∑ |
|
= |
lim→∞ |
∑ |
|
∑ |
= |
|
→ |
||||
|
|
1− |
|
|
|
|
|
1− |
1− |
||||||||||||
|
|
=0 |
|
|
|
|
|
|
=0 |
|
|
|
|
=0 |
|
=0 |
|
|
|
|
|
6. Супремумы и инфимумы. Их свойства
Определение: мн-во ограничено сверху, если 1: ( ) ≤ 1 и ограничено снизу, если
2: ( ) ≥ 2. При этом 1 и 2 – это верхняя и нижняя границы соответственно.
Супремум мн-ва (sup ) — это наименьшая из верхних границ; Инфимум мн-ва (inf ) — это наибольшая из нижних границ.
Теорема 1
sup — точная верхняя граница (минимальная верхняя граница) в смысле: = sup
1) – верхняя граница
2) ( ε > 0) : > − ε
Аналогично: inf — точная нижняя граница (максимальная нижняя граница)