Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Maths / Basic Statistics(1)

.pdf
Скачиваний:
1
Добавлен:
28.01.2025
Размер:
148.78 Кб
Скачать

Basic Statistics

Measures of Central Tendency

The mean is the statistical term for the average.

The mean is calculated by adding all scores then dividing by the number of scores.

 

̅

 

 

=

 

Mean =

 

=

 

to add

The median is the middle score or average of the two middle scores (once the scores are arranged in order).

The mode is the score with the highest frequency.

Example: Below are the wages of ten employees in a small business: $220 $230 $290 $275 $265 $250 $1500 $220 $220 $240

(a)Calculate the mean wage

(b)Calculate the median wage

(c)Calculate the mode wage

(d)Does the mean, median or mode give the best measure of a typical wage in the business?

Answers

 

 

 

 

 

 

 

 

 

(a)

Mean =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

220+230+290+275+265+250+1500+220+220+240

 

 

 

 

3710

 

 

10

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

=

10

 

 

 

 

 

 

 

 

 

$371.00

 

 

 

 

 

 

 

 

(b)

Median (remember must be in order)

 

 

 

 

 

 

 

220

220

220

230

240

250

265

275

290

1500

 

Median =

240+250

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

=$245

(c)Mode = $220.00 (as it occurs 3 times)

(d)In this case, the median is the best measure of the typical score, because the mode is the lowest wage and the mean is inflated by the $1500.00

Practice Questions:

Calculate the mean, median, and mode of:

1.4, 8, 3, 5, 5

2.16, 24, 30, 35, 23, 11, 45, 28, 16, 16

3.9.2, 9.7, 8.8, 8.1, 5.6, 7.5, 8.5, 6.4, 9.2

Answers:

 

̅

 

 

 

 

 

 

 

 

 

 

 

 

1.

Mean

=

 

=

 

 

 

 

 

 

 

=

4+8+3+5+5

 

 

 

 

 

 

=

25

5

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

=

5

 

 

 

 

Median =

 

3

4

5

5

8

 

 

 

Median = 5

 

 

 

 

Mode

= 5

 

 

 

 

 

 

 

 

 

̅

 

 

 

 

 

 

 

 

 

 

 

2.

Mean

=

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

244

 

 

 

 

 

 

 

 

 

 

 

 

=

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

24.4

 

 

 

 

 

 

 

 

Median =

11

=

+

16

23

24

28

30

35

45

 

16

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 23.5

 

 

 

 

 

 

 

 

 

Mode

=

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

̅

 

 

 

 

 

 

 

 

 

 

 

3.

Mean

=

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

73

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

=

 

8.11

 

 

 

 

 

 

 

 

Median =

5.6

6.4

 

7.5

8.1

8.5

8.8

9.2

9.2

9.7

 

 

 

 

 

=

 

8.5

 

 

 

 

 

 

 

 

Mode

=

9.2

 

 

 

 

 

 

 

 

 

 

 

Measures of Spread

 

 

 

 

 

 

 

Range = highest score - lowest score

 

Lower Quartile

=

 

lowest1

 

 

 

 

=

 

25% of the scores

Upper Quartile

=

 

highest3

 

 

=

 

25% of the scores

Interquartile Range

=

-

 

 

 

 

(IQR)

=

 

upper3 quartile1

– lower quartile

 

=

 

middle 50% of the scores

Standard Deviation

=

 

a measure of how much a typical score in a data set differs

 

 

 

from the mean

 

 

σ =

 

2

 

 

 

 

 

( −̅)

 

 

 

 

 

 

 

 

Example:

Here are the number of home runs scored in a series of base ball matches: 12 9 4 6 5 8 9 4 10 2

Calculate the

a)Range

b)Interquartile range

c)Standard deviation

(a)

Range

=

Top score – bottom score

=12 – 2

=10

(b)Write the data in ascending order.

2

4

4

5

6

8

9

9

10

12

Divide the data set in two

 

 

 

 

 

 

 

 

 

2

4

4

5

6

8

9

9

10

12

Lower quartile

 

=

the median of the lower half

 

 

 

 

 

 

 

 

=

4

 

 

 

 

 

 

 

 

Upper quartile

 

=

the median of the upper half

 

 

 

 

 

 

 

 

=

9

 

 

 

 

 

 

 

 

So IQR

 

=

9 – 4

 

 

 

 

 

 

 

 

 

=

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2- 6.9 = -4.9

 

 

24.01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

-2.9

 

 

8.41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

-2.9

 

 

8.41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

-1.9

 

 

3.61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

0.9

 

 

0.81

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

1.1

 

 

1.21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

2.1

 

 

4.41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9

 

 

 

2.1

 

 

4.41

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

3.1

 

 

9.61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

5.1

 

 

26.01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 69

 

 

 

 

 

 

= 92.11

 

 

 

̅= 6.9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(−̅)

 

 

 

 

 

 

Standard deviation

=

σ =

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

=9210.11

=3.03

Practice Questions:

For the following sets of data, calculate the:

(a)Range

(b)Interquartile range

(c)Standard deviation

1.3, 5, 9, 2, 7, 1, 6, 5

2.11, 8, 7, 12, 10, 11, 14

3.25, 15, 78, 35, 56, 41, 17, 24

Answers

1(a) Range =

9 – 1

=8

(b)

1

2

3

5

5

6

7

9

 

Lower quartile=

2.5

 

 

 

 

 

Upper quartile =

6.5

 

 

 

 

 

IQR

 

=

6.5 -2.5

 

 

 

 

=4

(c)

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

-3.75

 

14.06

 

 

 

 

 

 

 

2

 

-2.75

 

7.56

 

 

 

 

 

 

 

3

 

-1.75

 

3.06

 

 

 

 

 

 

 

5

 

0.25

 

0.06

 

 

 

 

 

 

 

5

 

0.25

 

0.06

 

 

 

 

 

 

 

6

 

1.25

 

1.56

 

 

 

 

 

 

 

7

 

2.25

 

5.06

 

 

 

 

 

 

 

9

 

4.25

 

18.06

 

 

 

 

 

 

 

 

= 38

 

 

 

= 49.48

 

̅= 4.75

 

 

 

Standard deviation

σ =

 

498.48

 

 

 

 

= 2.49

 

 

2(a) Range =

14 - 7

=7

(b)

7

8

10

11

11

12

14

 

 

 

 

Median

=

11

(don’t include in IQR Calculation)

 

 

 

Bottom half

=

7

8

10

 

Top half

11

12

14

 

Lower quartile=

8

 

 

 

 

 

 

 

 

Upper quartile =

12

 

 

 

 

 

 

 

 

IQR

 

=

12 - 8

 

 

 

 

 

 

 

=4

(c)

 

x

 

 

 

 

 

 

 

 

 

 

7

 

-3.43

 

11.76

 

 

 

 

 

 

8

 

-2.43

 

5.9

 

 

 

 

 

 

10

 

-0.43

 

0.18

 

 

 

 

 

 

11

 

0.57

 

0.32

 

 

 

 

 

 

11

 

1.57

 

2.46

 

 

 

 

 

 

12

 

2.57

 

6.6

 

 

 

 

 

 

14

 

4.57

 

20.88

 

 

 

 

 

 

 

̅= 10.43

 

 

= 48.1

 

= 73

 

 

 

 

Standard deviation

σ = 487.1

 

 

 

= 2.62

 

 

3.(a) Range =

78 -15

=63

(b)

15

17

24

25

35

41

56

78

 

Lower quartile=

2

Upper quartile =

2

 

17+24

41+56

 

 

 

=

20.5

 

 

=

48.5

 

IQR

 

=

48.5 – 20.5

 

 

 

 

=28

(c)

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

-21.4

 

457.96

 

 

 

 

 

 

 

 

 

 

17

-19.4

 

376.36

 

 

 

 

 

 

 

 

 

 

24

-12.4

 

153.76

 

 

 

 

 

 

 

 

 

 

25

-11.4

 

129.96

 

 

 

 

 

 

 

 

 

 

35

-1.4

 

1.96

 

 

 

 

 

 

 

 

 

 

41

4.6

 

21.16

 

 

 

 

 

 

 

 

 

 

56

19.6

 

384.16

 

 

 

 

 

 

 

 

 

 

78

41.6

 

1730.56

 

 

 

 

 

 

 

 

̅

=

291

 

=3255.88

 

=

 

 

 

8

 

 

 

 

 

=36.4

 

 

 

Standard deviation = σ

= 32558 .88

= 20.17

Frequency Histograms

There are 38 houses in a suburban street. The following table represents the number of people in each house:

No. of People

Frequency

1

1

2

4

3

10

4

15

5

8

Show this information in a histogram.

Frequency Histogram - suburban street

Frequency

16

14

12

10

8

6

4

2

0

1

2

3

4

5

Number of People in a House

Practise Question:

The marks out of 20 received by 30 students in a book review assignment are given below:

Mark

12

13

14

15

16

17

18

19

20

Frequency

2

7

6

5

4

2

3

0

1

Draw a frequency histogram to represent this data.

Соседние файлы в папке Maths