Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

решение идз 3 из пособия вариант 7

.docx
Скачиваний:
0
Добавлен:
17.01.2025
Размер:
48.4 Кб
Скачать

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт (факультет)

Компьютерных наук

Кафедра

Прикладной математики

Индивидуальное домашнее заданий №3

По дисциплине: «Дискретная математика».

На тему: «Алгебра Жегалкина.»

Студент

АС-23-2

Корниенко А.С.

группа

подпись, дата

фамилия, инициалы

Руководитель

Жихорева С.В.

ученая степень, ученое звание

подпись, дата

фамилия, инициалы

Липецк 2024

Вариант 7.

№1 Построить полиномы Жегалкина для булевых функций

а) f(x,y) = x ∧ y | x = ¬((x ∧ y) ∧ x)

f(0,0) = a00 = 1 ⇒ a00 = 1

f(0,1) = a00 ⊕ a01 = 1 ⊕ a01 = 1 ⇒ a01 = 0

f(1,0) = a00 ⊕ a10 = 1 ⊕ a10 = 1 ⇒ a10 = 0

f(1,1) = a00 ⊕ a01 ⊕ a10 ⊕ a11 = 1 ⊕ 0 ⊕ 0 ⊕ a11 = 0 ⇒ a11 = 1

f(x,y) = 1 ⊕ xy

б) f(x,y) = x ∨ y ∧ ¬x | y = ¬((x ∨ y ¬x) ∧ y)

f(0,0) = a00 = 1 ⇒ a00 = 1

f(0,1) = a00 ⊕ a01 = 1 ⊕ a01 = 0 ⇒ a01 = 1

f(1,0) = a00 ⊕ a10 = 1 ⊕ a10 = 1 ⇒ a10 = 0

f(1,1) = a00 ⊕ a01 ⊕ a10 ⊕ a11 = 1 ⊕ 1 ⊕ 0 ⊕ a11 = 0 ⇒ a11 = 0

f(x,y) = 1 ⊕ y

в) f(x,y) = ¬x ~ y ⊕ ¬y ↓ x ∧ y = ¬((¬x ~ y ⊕ ¬y) ∨ ( x ∧ y))

f(0,0) = a00 = 0 ⇒ a00 = 0

f(0,1) = a00 ⊕ a01 = 0 ⊕ a01 = 0 ⇒ a01 = 0

f(1,0) = a00 ⊕ a10 = 0 ⊕ a10 = 1 ⇒ a10 = 1

f(1,1) = a00 ⊕ a01 ⊕ a10 ⊕ a11 = 0 ⊕ 0 ⊕ 1 ⊕ a11 = 0 ⇒ a11 = 1

f(x,y) = x ⊕ xy

№2

а) f(x,y,z) = x∧z∨y

f(0,0,0) = a000 = 0 ⇒ a000 = 0

f(0,0,1) = a000 ⊕ a001 = 0 ⊕ a001 = 0 ⇒ a001 = 0

f(0,1,0) = a000 ⊕ a010 = 0 ⊕ a010 = 1 ⇒ a010 = 1

f(1,0,0) = a000 ⊕ a100 = 0 ⊕ a100 = 0 ⇒ a100 = 0

f(0,1,1) = a000 ⊕ a001 ⊕ a010 ⊕ a011 = 0 ⊕ 0 ⊕ 1 ⊕ a011 = 1 ⇒ a011 = 0

f(1,0,1) = a000 ⊕ a001 ⊕ a100 ⊕ a101 = 0 ⊕ 0 ⊕ 0 ⊕ a101 = 1 ⇒ a101 = 1

f(1,1,0) = a000 ⊕ a010 ⊕ a100 ⊕ a110 = 0 ⊕ 1 ⊕ 0 ⊕ a110 = 1 ⇒ a110 = 0

f(1,1,1) = a000 ⊕ a001 ⊕ a010 ⊕ a100 ⊕ a011 ⊕ a101 ⊕ a110 ⊕ a111 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ a111 = 1 ⇒ a111 = 1

f(x,y,z) = y ⊕ xz ⊕ xyz

б) f(x,y,z) = ¬x ↓ y ⊕ ¬z ↑ y = ¬(¬x ∨ (y ⊕ ¬z ↑ y))

f(0,0,0) = a000 = 0 ⇒ a000 = 0

f(0,0,1) = a000 ⊕ a001 = 0 ⊕ a001 = 0 ⇒ a001 = 0

f(0,1,0) = a000 ⊕ a010 = 0 ⊕ a010 = 0 ⇒ a010 = 0

f(1,0,0) = a000 ⊕ a100 = 0 ⊕ a100 = 0 ⇒ a100 = 0

f(0,1,1) = a000 ⊕ a001 ⊕ a010 ⊕ a011 = 0 ⊕ 0 ⊕ 0 ⊕ a011 = 0 ⇒ a011 = 0

f(1,0,1) = a000 ⊕ a001 ⊕ a100 ⊕ a101 = 0 ⊕ 0 ⊕ 0 ⊕ a101 = 0 ⇒ a101 = 0

f(1,1,0) = a000 ⊕ a010 ⊕ a100 ⊕ a110 = 0 ⊕ 0 ⊕ 0 ⊕ a110 = 0 ⇒ a110 = 0

f(1,1,1) = a000 ⊕ a001 ⊕ a010 ⊕ a100 ⊕ a011 ⊕ a101 ⊕ a110 ⊕ a111 = 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ a111 = 1 ⇒ a111 = 1

f(x,y,z) = xyz

в) f(x,y,z) = z⊕¬y∧x→x∨¬z

f(0,0,0) = a000 = 1 ⇒ a000 = 1

f(0,0,1) = a000 ⊕ a001 = 1 ⊕ a001 = 0 ⇒ a001 = 1

f(0,1,0) = a000 ⊕ a010 = 1 ⊕ a010 = 1 ⇒ a010 = 0

f(1,0,0) = a000 ⊕ a100 = 1 ⊕ a100 = 1 ⇒ a100 = 0

f(0,1,1) = a000 ⊕ a001 ⊕ a010 ⊕ a011 = 1 ⊕ 1 ⊕ 0 ⊕ a011 = 0 ⇒ a011 = 0

f(1,0,1) = a000 ⊕ a001 ⊕ a100 ⊕ a101 = 1 ⊕ 1 ⊕ 0 ⊕ a101 = 1 ⇒ a101 = 1

f(1,1,0) = a000 ⊕ a010 ⊕ a100 ⊕ a110 = 1 ⊕ 0 ⊕ 0 ⊕ a110 = 1 ⇒ a110 = 0

f(1,1,1) = a000 ⊕ a001 ⊕ a010 ⊕ a100 ⊕ a011 ⊕ a101 ⊕ a110 ⊕ a111 = 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ a111 = 1 ⇒ a111 = 0

f(x,y,z) = 1 ⊕ z ⊕ xz

№3

а) f(x,y,z,t) = y∨t≡x↓z

f(0,0,0,0) = a0000 = 0 ⇒ a0000 = 0

f(0,0,0,1) = a0000 ⊕ a0001 = 0 ⊕ a0001 = 1 ⇒ a0001 = 1

f(0,0,1,0) = a0000 ⊕ a0010 = 0 ⊕ a0010 = 1 ⇒ a0010 = 1

f(0,1,0,0) = a0000 ⊕ a0100 = 0 ⊕ a0100 = 1 ⇒ a0100 = 1

f(1,0,0,0) = a0000 ⊕ a1000 = 0 ⊕ a1000 = 1 ⇒ a1000 = 1

f(0,0,1,1) = a0000 ⊕ a0001 ⊕ a0010 ⊕ a0011 = 0 ⊕ 1 ⊕ 1 ⊕ a0011 = 0 ⇒ a0011 = 0

f(0,1,0,1) = a0000 ⊕ a0001 ⊕ a0100 ⊕ a0101 = 0 ⊕ 1 ⊕ 1 ⊕ a0101 = 1 ⇒ a0101 = 1

f(0,1,1,0) = a0000 ⊕ a0010 ⊕ a0100 ⊕ a0110 = 0 ⊕ 1 ⊕ 1 ⊕ a0110 = 0 ⇒ a0110 = 0

f(1,0,0,1) = a0000 ⊕ a0001 ⊕ a1000 ⊕ a1001 = 0 ⊕ 1 ⊕ 1 ⊕ a1001 = 0 ⇒ a1001 = 0

f(1,0,1,0) = a0000 ⊕ a0010 ⊕ a1000 ⊕ a1010 = 0 ⊕ 1 ⊕ 1 ⊕ a1010 = 1 ⇒ a1010 = 1

f(1,1,0,0) = a0000 ⊕ a0100 ⊕ a1000 ⊕ a1100 = 0 ⊕ 1 ⊕ 1 ⊕ a1100 = 0 ⇒ a1100 = 0

f(0,1,1,1) = a0000 ⊕ a0001 ⊕ a0010 ⊕ a0100 ⊕ a0011 ⊕ a0101 ⊕ a0110 ⊕ a0111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ a0111 = 0 ⇒ a0111 = 0

f(1,0,1,1) = a0000 ⊕ a0001 ⊕ a0010 ⊕ a1000 ⊕ a0011 ⊕ a1001 ⊕ a1010 ⊕ a1011 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ a1011 = 0 ⇒ a1011 = 0

f(1,1,0,1) = a0000 ⊕ a0001 ⊕ a0100 ⊕ a1000 ⊕ a0101 ⊕ a1001 ⊕ a1100 ⊕ a1101 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ a1101 = 0 ⇒ a1101 = 0

f(1,1,1,0) = a0000 ⊕ a0010 ⊕ a0100 ⊕ a1000 ⊕ a0110 ⊕ a1010 ⊕ a1100 ⊕ a1110 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ a1110 = 0 ⇒ a1110 = 0

f(1,1,1,1) = a0000 ⊕ a0001 ⊕ a0010 ⊕ a0100 ⊕ a1000 ⊕ a0011 ⊕ a0101 ⊕ a0110 ⊕ a1001 ⊕ a1010 ⊕ a1100 ⊕ a0111 ⊕ a1011 ⊕ a1101 ⊕ a1110 ⊕ a1111 = 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ a1111 = 0 ⇒ a1111 = 0

f(x,y,z,t) = z ⊕ y ⊕ x ⊕ t ⊕ xz ⊕ ty

б) f(x,y,z,t) = y∧x⊕z≡t→x

f(0,0,0,0) = a0000 = 0 ⇒ a0000 = 0

f(0,0,0,1) = a0000 ⊕ a0001 = 0 ⊕ a0001 = 1 ⇒ a0001 = 1

f(0,0,1,0) = a0000 ⊕ a0010 = 0 ⊕ a0010 = 0 ⇒ a0010 = 0

f(0,1,0,0) = a0000 ⊕ a0100 = 0 ⊕ a0100 = 0 ⇒ a0100 = 0

f(1,0,0,0) = a0000 ⊕ a1000 = 0 ⊕ a1000 = 1 ⇒ a1000 = 1

f(0,0,1,1) = a0000 ⊕ a0001 ⊕ a0010 ⊕ a0011 = 0 ⊕ 1 ⊕ 0 ⊕ a0011 = 1 ⇒ a0011 = 0

f(0,1,0,1) = a0000 ⊕ a0001 ⊕ a0100 ⊕ a0101 = 0 ⊕ 1 ⊕ 0 ⊕ a0101 = 1 ⇒ a0101 = 0

f(0,1,1,0) = a0000 ⊕ a0010 ⊕ a0100 ⊕ a0110 = 0 ⊕ 0 ⊕ 0 ⊕ a0110 = 1 ⇒ a0110 = 1

f(1,0,0,1) = a0000 ⊕ a0001 ⊕ a1000 ⊕ a1001 = 0 ⊕ 1 ⊕ 1 ⊕ a1001 = 0 ⇒ a1001 = 0

f(1,0,1,0) = a0000 ⊕ a0010 ⊕ a1000 ⊕ a1010 = 0 ⊕ 0 ⊕ 1 ⊕ a1010 = 1 ⇒ a1010 = 0

f(1,1,0,0) = a0000 ⊕ a0100 ⊕ a1000 ⊕ a1100 = 0 ⊕ 0 ⊕ 1 ⊕ a1100 = 0 ⇒ a1100 = 1

f(0,1,1,1) = a0000 ⊕ a0001 ⊕ a0010 ⊕ a0100 ⊕ a0011 ⊕ a0101 ⊕ a0110 ⊕ a0111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ a0111 = 0 ⇒ a0111 = 0

f(1,0,1,1) = a0000 ⊕ a0001 ⊕ a0010 ⊕ a1000 ⊕ a0011 ⊕ a1001 ⊕ a1010 ⊕ a1011 = 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ a1011 = 0 ⇒ a1011 = 0

f(1,1,0,1) = a0000 ⊕ a0001 ⊕ a0100 ⊕ a1000 ⊕ a0101 ⊕ a1001 ⊕ a1100 ⊕ a1101 = 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ a1101 = 1 ⇒ a1101 = 0

f(1,1,1,0) = a0000 ⊕ a0010 ⊕ a0100 ⊕ a1000 ⊕ a0110 ⊕ a1010 ⊕ a1100 ⊕ a1110 = 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ a1110 = 1 ⇒ a1110 = 0

f(1,1,1,1) = a0000 ⊕ a0001 ⊕ a0010 ⊕ a0100 ⊕ a1000 ⊕ a0011 ⊕ a0101 ⊕ a0110 ⊕ a1001 ⊕ a1010 ⊕ a1100 ⊕ a0111 ⊕ a1011 ⊕ a1101 ⊕ a1110 ⊕ a1111 = 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ a1111 = 0 ⇒ a1111 = 0

f(x,y,z,t) = z ⊕ t ⊕ xy ⊕ tx

в) f(x,y,z,t) = y→ x∨t⊕z∧y≡x

f(0,0,0,0) = a0000 = 0 ⇒ a0000 = 0

f(0,0,0,1) = a0000 ⊕ a0001 = 0 ⊕ a0001 = 0 ⇒ a0001 = 0

f(0,0,1,0) = a0000 ⊕ a0010 = 0 ⊕ a0010 = 1 ⇒ a0010 = 1

f(0,1,0,0) = a0000 ⊕ a0100 = 0 ⊕ a0100 = 1 ⇒ a0100 = 1

f(1,0,0,0) = a0000 ⊕ a1000 = 0 ⊕ a1000 = 0 ⇒ a1000 = 0

f(0,0,1,1) = a0000 ⊕ a0001 ⊕ a0010 ⊕ a0011 = 0 ⊕ 0 ⊕ 1 ⊕ a0011 = 0 ⇒ a0011 = 1

f(0,1,0,1) = a0000 ⊕ a0001 ⊕ a0100 ⊕ a0101 = 0 ⊕ 0 ⊕ 1 ⊕ a0101 = 1 ⇒ a0101 = 0

f(0,1,1,0) = a0000 ⊕ a0010 ⊕ a0100 ⊕ a0110 = 0 ⊕ 1 ⊕ 1 ⊕ a0110 = 1 ⇒ a0110 = 1

f(1,0,0,1) = a0000 ⊕ a0001 ⊕ a1000 ⊕ a1001 = 0 ⊕ 0 ⊕ 0 ⊕ a1001 = 0 ⇒ a1001 = 0

f(1,0,1,0) = a0000 ⊕ a0010 ⊕ a1000 ⊕ a1010 = 0 ⊕ 1 ⊕ 0 ⊕ a1010 = 0 ⇒ a1010 = 1

f(1,1,0,0) = a0000 ⊕ a0100 ⊕ a1000 ⊕ a1100 = 0 ⊕ 1 ⊕ 0 ⊕ a1100 = 1 ⇒ a1100 = 0

f(0,1,1,1) = a0000 ⊕ a0001 ⊕ a0010 ⊕ a0100 ⊕ a0011 ⊕ a0101 ⊕ a0110 ⊕ a0111 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ a0111 = 0 ⇒ a0111 = 0

f(1,0,1,1) = a0000 ⊕ a0001 ⊕ a0010 ⊕ a1000 ⊕ a0011 ⊕ a1001 ⊕ a1010 ⊕ a1011 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ a1011 = 1 ⇒ a1011 = 0

f(1,1,0,1) = a0000 ⊕ a0001 ⊕ a0100 ⊕ a1000 ⊕ a0101 ⊕ a1001 ⊕ a1100 ⊕ a1101 = 0 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ a1101 = 1 ⇒ a1101 = 0

f(1,1,1,0) = a0000 ⊕ a0010 ⊕ a0100 ⊕ a1000 ⊕ a0110 ⊕ a1010 ⊕ a1100 ⊕ a1110 = 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ a1110 = 1 ⇒ a1110 = 1

f(1,1,1,1) = a0000 ⊕ a0001 ⊕ a0010 ⊕ a0100 ⊕ a1000 ⊕ a0011 ⊕ a0101 ⊕ a0110 ⊕ a1001 ⊕ a1010 ⊕ a1100 ⊕ a0111 ⊕ a1011 ⊕ a1101 ⊕ a1110 ⊕ a1111 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 1 ⊕ a1111 = 0 ⇒ a1111 = 0

f(x,y,z,t) = y ⊕ x ⊕ yz ⊕ xy ⊕ ty ⊕ txy