Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория вероятности БГУ.docx
Скачиваний:
3
Добавлен:
14.01.2025
Размер:
1.31 Mб
Скачать

14. Вероятность появления хотя бы одного события.

Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий? Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.

Теорема. Вероятность появления хотя бы одного из событий А1 , А2 , ..., Аn , независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий 

Р (A) = 1 — q1q2 ... qn.(*)

Обозначим через А событие, состоящее в появлении хотя бы одного из событий А12, ...,An. События А и

 (ни одно из событий не наступило) противоположны, следовательно, сумма их вероятностей равна единице:

Отсюда, пользуясь теоремой умножения, получим

или

Ч а с т н ы й   с л у ч а й. Если события А1 , А2 , ..., Аn имеют одинаковую вероятность, равную р, то вероятность появления хотя бы одного из этих событий

P (A) = l — qn. (**)

15. Теорема сложения вероятностей совместных событий.

Суммой А+В двух событий А и В называют событие, состоящее в том, что произошло хотя бы одно из событий А и В. Суммой нескольких событий, соответ-ственно, называется событие, заключающееся в том, что произошло хотя бы одно из этих событий.

Теорема1. (теорема сложения). Вероятность р(А + В) суммы событий А и В равна

Р (А + В ) = р (А) + р (В) – р (АВ). (2.2)

Доказательство.

Докажем теорему сложения для схемы случаев. Пусть п – число возможных исходов опыта, тА – число исходов, благоприятных событию АтВ – число исходов, благопри-ятных событию В, а тАВ – число исходов опыта, при которых происходят оба события (то есть исходов, благоприятных произведению АВ). Тогда число исходов, при которых имеет место событие А + В, равно тА + тВ – тАВ (так как в сумме (тА + тВ) тАВ учтено дважды: как исходы, благоприятные А, и исходы, благоприятные В). Следовательно, вероятность суммы можно определить по формуле (1.1):

что и требовалось доказать.

Теорему1 можно распространить на случай суммы любого числа событий. Например, для суммы трех событий А, В и С

Р(А + В + С) = р(А) + р(В) + р(С) – р(АВ) – р(АС) – р(ВС) + р(АВС)

Теорема 2. Сумма вероятностей противоположных событий равна 1:

р(А) + р(  ) = 1. Доказательство.

Так как А и образуют полную группу, то одно из них обязательно произойдет в результате опыта, то есть событие А + является достоверным. Следовательно,

РА + ) = 1. Но, так как А и несовместны, из (2.4) следует, что Р(А + ) = р(А) + р( ). Значит, р(А) + р( ) = 1, что и требовалось доказать.

Замечание. В ряде задач проще искать не вероятность заданного события, а вероятность события, противоположного ему, а затем найти требуемую вероятность по формуле (2.5).

16. Формула полной вероятности.

Пусть событие А может произойти только с одним из n несовместных событий H1…Hn, образующих полную группу:   Ø,   , тогда   .

Так как события   и   несовместны, то и (  ) и (  ) являются несовместными. Тогда по теореме сложения:   .

Применяя теорему умножения к каждому слагаемому, получим формулу полной вероятности:  .

Она применяется во всех случаях, когда опыт со случайным исходом распадается на два этапа: на первом учитываются условия, на втором – его результат.

События H1, H2,…, Hn часто называют гипотезами.

Иногда интересует, как перераспределятся вероятности гипотез после того, как событие А уже произошло:   .   По теореме умножения:

 ,   .

Подставляя в знаменатель формулу полной вероятности, получим формулу Байеса:  .