
- •1. Испытания и события. Виды случайных событий.
- •2. Классическое определение вероятности.
- •3. Основные формулы комбинаторики.
- •4. Относительная частота.
- •5. Статистическая вероятность.
- •6. Геометрические вероятности.
- •7. Теорема сложения вероятностей несовместных событий.
- •8. Полная группа событий.
- •9. Противоположные события.
- •10. Произведение событий.
- •11. Условная вероятность.
- •12. Теорема умножения вероятностей.
- •13. Независимые события. Теорема умножения для независимых событий.
- •14. Вероятность появления хотя бы одного события.
- •15. Теорема сложения вероятностей совместных событий.
- •16. Формула полной вероятности.
- •17. Вероятность гипотез. Формулы Байеса.
- •18. Повторение испытаний.
- •19. Дискретные и непрерывные случайные величины.
- •20. Закон распределения вероятностей дискретной случайной величины.
- •21. Биномиальное распределение.
- •22. Распределение Пуассона.
- •23. Геометрическое распределение.
- •24. Математическое ожидание дискретной случайной величины. Вероятностный смысл.
- •25. Свойства математического ожидания.
- •26. Отклонение случайной величины от ее математического ожидания.
- •27. Дисперсия дискретной случайной величины.
- •28. Формулы для вычисления дисперсии. Свойства дисперсии.
- •29. Среднее квадратическое отклонение.
- •30. Среднее квадратическое отклонение суммы взаимно независимых случайных величин.
- •31. Генеральная и выборочная совокупности.
- •32. Повторная и бесповторная выборки. Репрезентативная выборка. Способы отбора.
- •33. Статистическое распределение выборки.
- •34. Эмпирическая функция распределения.
- •35. Полигон и гистограмма.
- •36. Генеральная средняя. Выборочная средняя.
- •37. Оценка генеральной средней по выборочной средней.
- •38. Групповая и общая средние.
- •39. Отклонение от общей средней и его свойство.
- •40. Генеральная дисперсия. Выборочная дисперсия.
- •41. Статистические оценки параметров распределения. Формулы для вычисления дисперсии.
- •42. Групповая, внутригрупповая, межгрупповая и общая дисперсии.
- •43. Сложение дисперсий.
- •44. Оценка генеральной дисперсии по исправленной выборочной.
- •45. Точность оценки, доверительная вероятность. Доверительный интервал.
- •Краткие объяснения от chatgpt
- •1. Испытания и события
- •2. Классическое определение вероятности
- •3. Основные формулы комбинаторики
- •4. Относительная частота
- •5. Статистическая вероятность
- •6. Геометрические вероятности
- •7. Теорема сложения вероятностей несовместных событий
- •8. Полная группа событий
- •9. Противоположные события
- •10. Произведение событий
- •11. Условная вероятность
- •12. Теорема умножения вероятностей
- •13. Независимые события
- •14. Вероятность появления хотя бы одного события
- •15. Теорема сложения вероятностей совместных событий
- •16. Формула полной вероятности
7. Теорема сложения вероятностей несовместных событий.
Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий: P (A + B) = P(A) + P(B).
8. Полная группа событий.
Пусть событие А может произойти только совместно с одним из событий Н1, Н2,…, Нп, образующих полную группу несовместных событий. Тогда события Н1, Н2,…, Нп называются гипотезами.
Теорема . Вероятность события А, наступающего совместно с гипотезами Н1, Н2,…, Нп, равна:
(3.1)
где p(Hi) – вероятность i- й гипотезы, а p(A/Hi) – вероятность события А при условии реализации этой гипотезы. Формула (3.1) носит название формулы полной вероятности.
Доказательство.
Можно считать событие А суммой попарно несовместных событий АН1, АН2,…, АНп. Тогда из теорем сложения и умножения следует, что
что и требовалось доказать.
9. Противоположные события.
Противоположными событиями называют два несовместных события, образующих полную группу. Если одно из них назвать А, то второе принято обозначать .
Каждому
событию А можно поставить в соответствие
противоположное ему событие
(читается
«не А»), состоящие из всех
исходов, неблагоприятных для
А. Графическая иллюстрация событий А и
представлена на рис.2.2
Р
ис.
2.2. Событие А и противоположное ему
событие .
Событие, противоположное событию А, состоит в том, что при выполнении опыта событие А не наступило.
Отметим, что А + = .
10. Произведение событий.
Произведением АВ событий А и В называется событие, состоящее в том, что произошло и событие А, и событие В. Аналогично произведением нескольких событий называется событие, заключающееся в том, что произошли все эти события
11. Условная вероятность.
Условной вероятностью наступления события A, при условии события B, называется вероятность наступления события A в результате испытаний, если известно, что в это испытании произошло событие B.
Действительно, в данном испытании произошло одно из t событий, входящих в B. Все элементарные события равновероятны, следовательно, для данного испытания вероятность наступления произвольного элементарного события, входящего в B равна 1/t. Тогда по классическому определению вероятности, в данном испытании событие A произойдет с вероятностью r/t.
В общем случае доказать эту формулировку невозможно, в теории вероятности она вводится как правило. Существует лишь толкование этой формулы.
12. Теорема умножения вероятностей.
Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого при условии, что первое событие произошло:
р (АВ) = р (А) · р (В/А). (2.6)
Доказательство.
Воспользуемся обозначениями теоремы 2.1. Тогда для вычисления р(В/А) множеством возможных исходов нужно считать тА (так как А произошло), а множеством благоприятных исходов – те, при которых произошли и А, и В ( тАВ ). Следовательно,
откуда следует утверждение теоремы.
Следствие. Если подобным образом вычислить вероятность события ВА, совпадающего с событием АВ, то получим, что р (ВА) = р (В) · р (А/В). Следовательно,
р (А) · р (В/А) = р (В) · р (А/В)
13. Независимые события. Теорема умножения для независимых событий.
Событие В называется независимым от события А, если появление события А не изменяет вероятности В, то есть р (В/А) = р (В).
Замечание. Если событие В не зависит от А, то и А не зависит от В. Действительно, из (2.7) следует при этом, что р (А) · р (В) = р (В) · р (А/В), откуда р (А/В) = р (А). Значит, свойство независимости событий взаимно.
Теорема умножения для независимых событий имеет вид:
р (АВ) = р (А) · р (В) ,
то есть вероятность произведения независимых событий равна произведению их вероятностей.