- •1. Испытания и события. Виды случайных событий.
- •2. Классическое определение вероятности.
- •3. Основные формулы комбинаторики.
- •4. Относительная частота.
- •5. Статистическая вероятность.
- •6. Геометрические вероятности.
- •7. Теорема сложения вероятностей несовместных событий.
- •8. Полная группа событий.
- •9. Противоположные события.
- •10. Произведение событий.
- •11. Условная вероятность.
- •12. Теорема умножения вероятностей.
- •13. Независимые события. Теорема умножения для независимых событий.
- •14. Вероятность появления хотя бы одного события.
- •15. Теорема сложения вероятностей совместных событий.
- •16. Формула полной вероятности.
- •17. Вероятность гипотез. Формулы Байеса.
- •18. Повторение испытаний.
- •19. Дискретные и непрерывные случайные величины.
- •20. Закон распределения вероятностей дискретной случайной величины.
- •21. Биномиальное распределение.
- •22. Распределение Пуассона.
- •23. Геометрическое распределение.
- •24. Математическое ожидание дискретной случайной величины. Вероятностный смысл.
- •25. Свойства математического ожидания.
- •26. Отклонение случайной величины от ее математического ожидания.
- •27. Дисперсия дискретной случайной величины.
- •28. Формулы для вычисления дисперсии. Свойства дисперсии.
- •29. Среднее квадратическое отклонение.
- •30. Среднее квадратическое отклонение суммы взаимно независимых случайных величин.
- •31. Генеральная и выборочная совокупности.
- •32. Повторная и бесповторная выборки. Репрезентативная выборка. Способы отбора.
- •33. Статистическое распределение выборки.
- •34. Эмпирическая функция распределения.
- •35. Полигон и гистограмма.
- •36. Генеральная средняя. Выборочная средняя.
- •37. Оценка генеральной средней по выборочной средней.
- •38. Групповая и общая средние.
- •39. Отклонение от общей средней и его свойство.
- •40. Генеральная дисперсия. Выборочная дисперсия.
- •41. Статистические оценки параметров распределения. Формулы для вычисления дисперсии.
- •42. Групповая, внутригрупповая, межгрупповая и общая дисперсии.
- •43. Сложение дисперсий.
- •44. Оценка генеральной дисперсии по исправленной выборочной.
- •45. Точность оценки, доверительная вероятность. Доверительный интервал.
- •Краткие объяснения от chatgpt
- •1. Испытания и события
- •2. Классическое определение вероятности
- •3. Основные формулы комбинаторики
- •4. Относительная частота
- •5. Статистическая вероятность
- •6. Геометрические вероятности
- •7. Теорема сложения вероятностей несовместных событий
- •8. Полная группа событий
- •9. Противоположные события
- •10. Произведение событий
- •11. Условная вероятность
- •12. Теорема умножения вероятностей
- •13. Независимые события
- •14. Вероятность появления хотя бы одного события
- •15. Теорема сложения вероятностей совместных событий
- •16. Формула полной вероятности
43. Сложение дисперсий.
Для сгруппированной, т. е. разделенной на i-ое количество групп, статистической совокупности изучение вариации признака по всей совокупности в целом дополняется изучением вариации для каждой из составляющих ее групп, а также между этими группами.
В простейшем случае, когда совокупность разбита на группы по одному фактору, изучение вариации достигается посредством исчисления и анализа трех видов дисперсий: общей, межгрупповой (случайной) и внутригрупповой (факторной).
Эти показатели взаимосвязаны друг с другом. Эта взаимосвязь называется правилом сложения дисперсий.
Пользуясь правилом сложения дисперсий, можно всегда по двум известным дисперсиям определить третью – неизвестную.
44. Оценка генеральной дисперсии по исправленной выборочной.
Пусть из генеральной совокупности объёмом n извлечена выборка. Требуется по данным выборке оценить неизвестную генеральную дисперсию Dг.
Выборочная дисперсия является смещённой оценкой генеральной дисперсии. Отличие математического ожидания выборочной дисперсии от оцениваемой генеральной дисперсии определяется следующим соотношением:
|
|
(6.16) |
Выборочная дисперсия может быть исправлена. Исправленная выборочная дисперсия равна:
|
|
(6.17) |
Исправленная выборочная дисперсия (6.17) является несмещённой оценкой генеральной дисперсии. Таким образом, получена оценка генеральной дисперсии по исправленной выборочной дисперсии.
45. Точность оценки, доверительная вероятность. Доверительный интервал.
Точечной называют оценку, которая определяется одним числом. Все оценки, рассмотренные выше,- точечные. При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, т. е. приводить к грубым ошибкам. По этой причине при небольшом объеме выборки следует пользоваться интервальными оценками.
Интервальной называют оценку, которая определяется двумя числами - концами интервала. Интервальные оценки позволяют установить точность и надежность оценок (смысл этих понятий выясняется ниже).
Пусть найденная по данным выборки статистическая характеристика Θ* служит оценкой неизвестного параметра Θ. Будем считать Θ постоянным числом (Θ может быть и случайной величиной). Ясно, что Θ* тем точнее определяет параметр Θ, чем меньше абсолютная величина разности |Θ - Θ*|. Другими словами, если δ>0 и |Θ - Θ*|<δ, то чем меньше δ, тем оценка точнее. Таким образом, положительное число δ характеризует точность оценки.
Однако статистические методы не позволяют категорически утверждать, что оценка Θ * удовлетворяет неравенству |Θ - Θ*|<δ; можно лишь говорить о вероятности γ, с которой это неравенство осуществляется.
Надежностью (доверительной вероятностью) оценки Θ по Θ* называют вероятность γ, с которой осуществляется неравенство |Θ - Θ*|<δ. Обычно надежность оценки задается наперед, причем в качестве γ берут число, близкое к единице. Наиболее часто задают надежность, равную 0,95; 0,99 и 0,999.
Пусть вероятность того, что |Θ - Θ*|<δ, равна γ:
Р[|Θ - Θ*|<δ]= γ.
Заменив неравенство |Θ - Θ*|<δ равносильным ему двойным неравенством -δ <Θ - Θ*< δ, или Θ*- δ <Θ< Θ* + δ, имеем
Р[Θ* - δ <Θ< Θ* + δ] = γ.
Это соотношение следует понимать так: вероятность того, что интервал(Θ*-δ, Θ*+δ) заключает в себе (покрывает) неизвестный параметр Θ, равна γ.
Доверительным называют интервал (Θ*-δ, Θ*+δ), который покрывает неизвестный параметр с заданной надежностью γ.
Замечание. Интервал (Θ*-δ, Θ*+δ) имеет случайные концы (их называют доверительными границами). Действительно, в разных выборках получаются различные значения Θ*. Следовательно, от выборки к выборке будут изменяться и концы доверительного интервала, т. е. доверительные границы сами являются случайными величинами - функциями от х1, x2, ..., хn.
Так как случайной величиной является не оцениваемый параметр Θ, а доверительный интервал, то более правильно говорить не о вероятности попадания Θ в доверительный интервал, а о вероятности того, что доверительный интервал покроет Θ.
Метод доверительных интервалов разработал американский статистик Ю. Нейман, исходя из идей английского статистика Р. Фишера.

.