Добавил:
Все файлы представлены в информационных, учебных и ознакомительных целях!rnНа авторство не претендую, пользуйтесь с удовольствием :) Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы на экзамен РиПОС.docx
Скачиваний:
5
Добавлен:
20.12.2024
Размер:
396.69 Кб
Скачать

4. Жалюзийные и инерционные пылеуловители

Инерционные пылеуловители. Эффективность обеспыливания в простой пылеосадительной камере может быть увеличена, а габариты ее уменьшены, если к эффекту гравитационного осаждения частиц придать дополнительный момент движения вниз. Этот принцип положен в основу многих конструкций пылеуловителей.

Типичным представителем этого класса пылеуловителей являются «пылевые мешки»которые нашли применение в металлургии. Например, такой пылеуловитель, установленный за доменной печью, обеспечивает степень улавливания частиц >30 мкм до 65—80 %.

В современных конструкциях инерционных пылеуловителей механизм осаждения частиц основан на изменении направления движения. Пылегазовый поток проходит вертикально вниз по цилиндрическому газоходу, затем изменяет направление движения на 180о и проходит через кольцевой зазор; уловленная пыль ссыпается в бункер. Эффект пылеулавливания в значительной степени зависит от правильно подобранного кольцевого зазора.

Фракционная эффективность этих пылеуловителей позволяет применять их в качестве самостоятельных аппаратов вместо, например, циклонов.

Жалюзийные пылеуловители относятся к простейшим типам инерционных сепараторов. В отличие от гравитационных, они работают при более высоких скоростях потоков и имеют меньшие габариты.

Поскольку улавливают только крупные частицы (D > 60…70 мкм), в настоящее время используются в основном для предварительного осаждения крупных частиц с целью уменьшения абразивного износа технологического оборудования или облегчения работы очистных устройств последующих ступеней. Для предварительного улавливания крупных частиц золы из дымовых газов разработаны жалюзийные золоуловители ВТИ, имеющие 6 вариантов исполнения для установки в горизонтальных и вертикальных (при движении газов снизу вверх) газоходах. Часто жалюзийные пылеуловители используются совместно с циклонами и служат концентраторами пыли для них (см. рисунок 6.5).

1-входная камера; 2-отсосная щель; 3-диффузор; 4-подводящий к циклону; 5-отсосный циклон; 6-отходящий от циклона воздуховод; 7-основной газоход по месту подсоединения отводящего воздуховода; 8-инжектор; 9-основной газоход после инжектора.

Жалюзийный пылеуловитель в газоходе

Жалюзийная решетка, установленная в газоходе, разделяет поток аэрозоля на две части. Основная часть потока, проходя через лопасти решетки, в некоторой степени освобождается от крупных фракций пыли и уходит по газоходу, а меньшая часть, отбираемая циклоном (до 20%), насыщается пылью, что облегчают ее очистку. После циклона поток вновь возвращается в газоход. Отношение расхода газов через циклон к общему расходу принимается обычно равным 10 или 20 %. Движение концентрированного потока через отсосный циклон может происходить за счет разрежения, образующегося при прохождении основного потока через инжектор или вентилятор, если величина разрежения недостаточно для преодоления сопротивления циклона, подводящих и отводящих воздуховодов.

5. Сухие центробежные циклоны

Циклон является одним из наиболее распространенных пылеулавливающих аппаратов. Однако с высокой эффективностью циклоны способны улавливать пыль только размером 15-20 мкм и более.

Работа циклона основана на использовании центробежных сил, возникающих при вращении газового потока внутри корпуса циклона. Это вращение достигается путем тангенциального ввода газа в циклон. В результате действия центробежных сил частицы пыли, взвешенные в потоке газа, отбрасываются на стенки корпуса и выпадают из потока. Газ, освобожденный от пыли, продолжая вращаться, совершает поворот на 180° и выходит из циклона через расположенную по оси выхлопную трубу (рис. 4.1). Частицы пыли, достигшие стенок корпуса, под действием перемещающегося в осевом направлении вращающегося потока и сил тяжести движутся по направлению к выходному отверстию корпуса и выводятся из циклона. Ввиду того что решающим фактором, обусловливающим движение пыли, являются аэродинамические силы, а не силы тяжести, циклоны можно располагать наклонно и даже горизонтально.

Схема циклона: 1 — входной патрубок; 2 — раскручивающая улитка; 3 — выходной патрубок; 4 — крышка; 5 — выхлопная труба; 6 — цилиндрическая часть; 7 — коническая часть; 8 — пневмовыпускное отверстие; 9 — бункер для пыли; 10 пылевой затвор.

При движении во вращающемся криволинейном потоке газа частицы пыли находятся под действием силы тяжести, центробежной силы и силы сопротивления. Сила тяжести для частицы обычно пренебрежимо мала. Скорость частиц пыли в циклоне можно без большой ошибки считать равной скорости вращения газового потока.

Под влиянием центробежной силы частица приобретает скорость в радиальном направлении, встречая при своем движении сопротивление газового слоя. Движение частицы пыли в радиальном направлении приближенно можно рассматривать как прохождение через совокупность равновесных состояний, в каждом из которых изменяющаяся по величине центробежная сила уравновешивается соответственно изменяющейся силой сопротивления.

Эффективность работы циклона возрастает с увеличением скорости газа, размера и плотности частиц пыли и уменьшается с увеличением вязкости газа и размеров циклона.