The Cambridge textbook of bioethics
.pdf
234R. M. Green
important biomedical knowledge that cannot be obtained by other means (US Department of Health and Human Services, 2005).
Since fetuses normally have male and female progenitors, the question arises as to whose consent is required for such research. The need for the mother’s consent is evident and is recognized in all jurisdictions. Perhaps reflecting heated debates in the USA on maternal–paternal consent for abortion, the father, as co-progenitor, is also required to consent on behalf of the fetus. However, federal regulations permit three exceptions to this rule: if the father is unavailable, incompetent or temporarily incapacitated, or the pregnancy resulted from rape or incest (US Department of Health and Human Services, 2005).
Research directed at women who are pregnant can also indirectly affect the fetus. The US federal regulations specify that no pregnant woman may be involved as a research subject unless either
(i) the purpose of the activity is to meet the health needs of the mother, and the fetus will be placed at risk only to the minimum extent necessary to meet such needs; or (ii) the risk to the fetus is minimal (US Department of Health and Human Services, 2005). Since some procedures, drugs, or dosage levels may enhance maternal outcomes while increasing fetal risk, these regulations can require institutional review boards to weigh the mother’s welfare against that of the fetus.
Fetal transplantation research is currently allowed in many jurisdictions, including the USA and UK. Since the mid 1990s, a strong international consensus has emerged about the conditions for good clinical practice regarding this (de Wert et al., 2002). These aim at separating the motives and timing for the abortion decision from the decision to donate fetal tissue, and they preclude commercialization of the tissue. There are voices that entirely reject this international consensus on the grounds that fetal tissue transplantation either encourages abortion or involves wrongful complicity in it. The Roman Catholic Church and some conservative Protestant groups hold these views (de Wert et al., 2002).
Embryo research
Public debate about embryo research began in earnest in 1978 with the birth of Louise Brown, the world’s first ‘‘test tube’’ baby. The development of IVF made the early, ex utero embryo a possible research ‘‘subject,’’ but, additionally, the rapid growth of infertility medicine created demand for more successful and less risky infertility treatments, intensifying the demand for embryo research (Green, 2001). The development of the first human embryonic stem cell lines by James Thomson and John Gearhart in 1998 (Thomson et al., 1998; Shamblott et al., 1998) opened up new uses for human embryos in the area of regenerative medicine research.
Unlike fetal research, where the welfare of born children and women complicates matters, embryo research unavoidably raises the question of how much protection nascent human life deserves. Two main ethical answers to this question have been proposed. One, strongly associated with the views of conservative religious groups, holds that human life deserves full moral protection from conception onward. This places the earliest embryo (and fetus) on a plane of equality with child and adult subjects and rules out embryo research that is not medically to the benefit of the embryo under study (Sacred Congregation for the Doctrine of the Faith, 1974; Pontifical Academy for Life, 2000).
Opposing this position is a range of views that can be termed ‘‘gradualist’’ or ‘‘developmental.’’ Some views stress the moral importance of qualities like sentience, brain activity, the presence of substantial bodily form, or the ability to survive independently of the mother (viability). Others emphasize not one but a variety of considerations that, taken together, compel us to extend protections (NIH Human Embryo Research Panel, 1994; Warren, 1997). What all these views have in common is the belief that the moral weight of the embryo and fetus is not established once and for all, but rather it increases over the course of a pregnancy as additional morally significant features make their appearance. Most who hold this view are willing to permit embryo research,
including research that destroys the embryo, up to 14 days of development. At that time, the primitive streak appears, organ formation begins, and further morally significant developmental events cannot be ruled out.
Law
Most legal jurisdictions permit carefully regulated direct or indirect research on the human fetus and many also permit fetal tissue transplantation research. The legal treatment of human embryo research is much more diverse. In 1990, the British Parliament passed the Human Fertilisation and Embryology Act, which led to the establishment of the Human Fertilisation and Embryology Authority, an official government agency that provides oversight and guidance for clinical and research programs in infertility medicine. In its current activities, the agency oversees and licenses all clinical infertility programs in the UK, as well as research on human embryos. Regulations in the UK are at once the most comprehensive and the most permissive in the world. Embryo research is permitted for a wide variety of reasons (Human Fertilisation and Embryology Authority, 2003), and therapeutic cloning research is allowed.
The situation in the USA is very different. Federal funding for any research requiring the destruction of human embryos is prohibited by law (Green, 2001). At the same time, except for some restrictive state laws, private sector research on embryos in the US is unregulated, unlike the UK where all research falls under the authority of the government agency. Despite this relative research freedom, the absence of federal support for human embryo research in the USA, a country with over 450 infertility programs, has contributed to the inefficiency and high cost of IVF (Neumann et al., 1994; Chambers et al., 2006). It has also increased the risks to women undergoing these procedures (Rossing et al., 1994; Rebar, 2002) and the children produced by them (Jones and Schnom, 2001; Kovalesky et al., 2003; Powell, 2003). The US regulations have blocked most federal funding for human embryonic stem
Embryo and fetal research 235
cell research and slowed the pace of that research (Dreifus, 2006).
Similar diversity of legislation is also evident on the international scene. Some nations (for example, Israel, Singapore, China, and India) permit or even fund embryonic stem cell research, while others (Ireland, Italy, and Germany) forbid it (Hoffman, 2004). Religion is a driving force in these differences. Nations with large Roman Catholic or evangelical Christian populations tend to oppose human embryonic stem cell research, whereas nations with non-Christian populations or fewer conservative Protestants or Catholics tend to be more supportive (Walters, 2004).
Policy
Since it is unlikely that moral positions on fetal or embryo research will change in the near future, a resolution of these debates may partly hinge on a series of science and technology policy determinations. Among these is the possibility of developing alternatives to the use of human embryos or fetuses in regenerative medicine research. This might include the use of adult stem cells or alternatives to the derivation of stem cells from spare human embryos. Recently, there has been considerable debate about the viability of these alternatives as a way of bypassing the current stem cell impasse and, in the USA, legislation has been proposed to encourage these directions (Hulse, 2006).
A second policy issue raised by embryo research concerns which considerations should guide public policy. Is it possible to separate one’s personal moral or religious views from the question of what should be appropriate public policy in a democratic society where citizens hold very different moral beliefs?
Finally, those who oppose research involving the destruction of embryos or fetuses will have to determine the extent to which they are prepared to benefit from the fruits of this research. Are they prepared to use stem cell lines derived from human embryos or vaccines made with fetal tissues? At what point does use become complicity and how
236R. M. Green
does one form public policy in this area (Green, 2002b)? Germany and Italy currently ban the derivation of embryonic stem cell lines, but permit the clinical or research use of lines created before the dates that these bans went into effect. Although US President George Bush opposes research destroying human embryos, he authorized the use of stem cell lines created before the imposition of his restrictive policy. These and other cases reveal how complex are the issues raised by morally controversial but potentially beneficial research.
The case
Now that embryonic stem cells have demonstrated curative potential, J and K and their physician will have to re-examine the bases of their opposition to the medical uses of human embryonic stem cells. Does the privileging of early embryos over more developed human beings really make sense? The pediatrician can also play a useful role by making clear how pervasive and difficult is the question of the extent to which we are prepared to help ourselves or others by using the fruits of deeds we morally oppose. For example, versions of the polio vaccine, which most citizens hailed as a major advance in human health, were prepared from cell cultures grown on the tissues of aborted fetuses. Each individual must determine where he or she will draw the line between benefiting from wrongful deeds and complicity in them.
REFERENCES
Bliton, M. (2005). Parental hope confronting scientific uncertainty: a test of ethics in maternal–fetal surgery for spina bifida. Clin Obstet Gynecol 48: 595–607.
Chambers, G. M., Ho, M. T., and Sullivan, E. A. (2006). Assisted reproductive technology treatment costs of a live birth: an age-stratified cost–outcome study of treatment in Australia. Med J Aust 184: 155–8 (http:// www.mja.com.au/public/rop/chambers/cha10890_fm. html).
Chung, Y. (2006). Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439: 216–19.
Cook, G. (2004). New technique eyes in stem-cell debate. Boston Globe, 21 November, A1.
de Wert, G., Berghmans, R. L., Boer, G. J., et al. (2002). Ethical guidance on human embryonic and fetal tissue transplantation: a European overview. Med Health Care Philos 5: 79–90.
Dreifus, C. (2006). At Harvard’s stem cell center, the barriers run deep and wide. New York Times, 24 January.
Freed, C. R., Greene, P. E., Breeze, R. E., et al. (2001). Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344: 710–19.
Gratton B, for the European Group on Ethics in Science and New Technologies to the European Commission. (2002). Survey on the National Regulations in the European Union Regarding Research on Human Embryos. Brussels: European Union. http://ec.europa. eu/european_group_ethics/publications/docs/nat_reg_ en.pdf.
Green, R. M. (2001). The Human Embryo Research Debates: Bioethics in the Vortex of Controversy. New York: Oxford University Press.
Green, R. M. (2002a). Research involving fetuses and in vitro fertilization. In Institutional Review Board: Management and Function, ed. R. J. Amdur and E. A. Bankert. Sudbury, MA: Jones and Bartlett, pp. 373–9.
Green, R. M. (2002b). Benefiting from ‘‘evil’’; an incipient moral problem in human stem cell research. Bioethics 16: 544–56.
Hoffman, W. (2004). Stem cell policy: world stem cell map. Delaware, MN: MBBNet (http://mbbnet.umn.edu/ scmap.html).
Howe, E. G. (2003). Ethical issue in fetal surgery. Semin Perinatol 27: 446–57.
Hulse, C. (2006). Senate approves a stem-cell bill; veto is expected. New York Times, 19 July.
Human Fertilisation and Embryology Authority (2003). Code of Practice, 6th edn, 10.2. London: Human Fertilisation and Embryology Authority (http://www.hfea.gov. uk/HFEAPublications/CodeofPractice/Code%20of%).
Jones, H. W., Jr. and Schnom, J. A. (2001). Multiple pregnancies: a call for action. Fert Steril 75: 11–17.
Kiessling, A. A. (2001). In the stem-cell debate, new concepts need new words. Nature 413: 453.
Embryo and fetal research 237
Kovalesky, G., Rinaudo, P., and Coutifaris, C. (2003). Do assisted reproductive technologies cause adverse fetal outcomes? Fert Steril 79: 1270–2.
Lanza, R. M., Caplan, A. L., Silver, R. M., et al. (2000). The ethical validity of using nuclear transfer In human transplantation. JAMA 284: 3175–9.
Melton, D., Daley, G., and Jennings, C. G. (2004). Altered nuclear transfer in stem-cell research: a flawed proposal. N Engl J Med 351: 2791–2.
Neumann, P. J., Gharib, S. D., and Weinstein, M. C. (1994). The cost of a successful delivery with in vitro fertilization.
N Engl J Med 331: 239–43.
NIH Human Embryo Research Panel (1994). The Human Embryo Research Report, Vols. I and II. Bethesda, MD: National Institutes of Health (http://ospp.od.nih.gov/ pdf/volume1_revised.pdf).
Pontifical Academy for Life (2000). Declaration on the Production and the Scientific and Therapeutic Use of Human Embryonic Stem Cells. Rome: The Curia (http://www. vatican.va/roman_curia/pontifical_academies/acdlife/ documents/rc_pa_acdlife_doc_20000824_cellule– staminali_en.html).
Powell, K. (2003). Seeds of doubt. Nature 422: 656–8. President’s Council on Bioethics (2004). Report of the
President’s Council on Bioethics: Monitoring Stem Cell Research. Washington, DC: Government Printing Office (http://bioethics.gov/reports/stemcell/index.html).
President’s Council on Bioethics (2005). Alternative Sources of Pluripotent Stem Cells: A White Paper. DC: Government Printing Office. http://www.bioethics.gov/ reports/white_paper/index.html.
Rebar, R. (2002). ASRM statement on risk of cancer associated with fertility drugs. Available online at: http:// www.inciid.org/article.php?cat=infertility&id=146.
Rossing, M. A., Daling, J. R., Weiss, N. J., et al. (1994). Ovarian tumors in a cohort or infertile women. N Engl J Med 331: 771–6.
Sacred Congregation for the Doctrine of the Faith (1974).
Declaration on Procured Abortion. Rome: The Curia (http://www.vatican.va/roman_curia/congregations/ cfaith/documents/rc_con_cfaith_doc_19741118_ declaration-abortion_en.html).
Shamblott, M. J., Axelman, J., Wang, S., et al. (1998). Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci 95: 13726–31.
Tauer, C. A. (2004). Embryo research. In Encyclopedia of Bioethics, 3rd edn, ed. S. G. Post. New York: Macmillan Reference USA, pp. 712–22.
Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282: 1145–7.
US Department of Health and Human Services (2005).
Code of Federal Regulations Title 45, Vol. 46. 204(b,c,e), 46.203(b). Washington, DC: Government Printing Office.
Walters, L. (2004). Human embryonic stem cell research: an intercultural perspective. Kennedy Inst Ethics J 14: 3–38.
Warren, M. A. (1997). Moral Status: Obligations to Persons and Other Living Things. New York: Oxford University Press.
SECTION VI
Health systems and institutions
Introduction
Ross Upshur
As ethical reflection in healthcare evolves, the scope and range of issues of concern continues to grow. Early scholarship in ethics focused primarily on ethical issues arising from the care of individual patients in hospitals, such as end of life care, broad policy issues such as euthanasia and abortion, or the domain of research ethics. For the most part, the issues concerned analyzing ethical dilemmas arising from the extensive and well-described value conflicts that can arise between healthcare providers, patients, and families.
There is a transition occurring, with a new emphasis on issues emerging from intersection of the actions of healthcare providers, healthcare institutions, and broader social and community concerns. As well, there are new and emerging ethical issues arising at organizational levels. In terms of the level of reflection, the concerns are less with interactions between individuals as between individuals and collectives, and between collectives and collectives. Current efforts explicating the ethical challenges in planning for an influenza pandemic illustrate the interactions of ethical reflection at several levels of application and the complex set of values required for a coherent framework for analysis of these issues (Joint Centre for Bioethics Pandemic Influenza Working Group, 2005). For the most part, this level of ethical reflection has been neglected or underdeveloped in standard accounts of clinical ethics.
These issues fall, somewhat neatly, under the heading of health systems and institutions. The chapters in this section illustrate this transition.
While some chapters focus on the more classic issues arising in individual care, others explore the trade offs between collective goods and individual good.
Chapter 32 outlines the challenges of organizational ethics. This represents a new field of ethical reflection that explores issues arising in healthcare organizations as corporate citizens. Priority setting is a ubiquitous challenge in healthcare, occurs at all levels of health service provision, and raises difficult ethical issues requiring systematic deliberation. In Ch. 33, a framework is provided for analyzing these difficult issues. Error has similarly been shown to be a universal issue in healthcare provision and He´bert et al. in Ch. 34 survey recent initiatives in what can broadly be termed a revolution in the way in which error is conceived and managed. Rather than focusing on faulting individual agents, the emphasis is on seeing error as a system issue and error reduction as part of a transparent and collaborative effort.
Conflicts of interest are also a ubiquitous component of medical care. The extent to which they pervade every day practice is largely underestimated. Chapter 35 provides a succinct overview of the multiple ways in which conflicts of interest arise and provides guidance on their management. Ethical issues at the intersection of clinical care and public health are discussed in Ch. 36. The mission of public health is the protection and promotion of the health of communities. As such, the focus of practice is on populations, and the interests of communities may be at variance with the rights
241
242R. Upshur
of individuals. How these conflicts are managed and the obligations of clinicians to public health are discussed in Ch. 36. In the aftermath of the tsunami, Hurricane Katrina, 9/11 and several notable terrorist acts against civilians, it has become evident that healthcare providers may find themselves drawn into disaster responses. The set of obligations for physicians in these contexts pose novel ethical challenges that are summarized in Ch. 37. The unique challenges faced by rural practitioners are described in Ch. 38 while Ch. 39 focuses on the provision of community healthcare – both drawing awareness to the lack of attention that these topics have received in the literature.
The chapters in this section summarize the current issues and controversies in the various fields.
It is evident from each chapter that they are characterized by diverse and complex ethical challenges where some consensus exists but where further research and scholarship, both empirical and conceptual, are required.
R E F E R E N C E S
Joint Centre for Bioethics Pandemic Influenza Working Group (2005). Stand on Guard for the Ethical Considerations in Pandemic Influenza Preparedness. Toronto: University of Toronto’s Joint Centre for Bioethics (http:// www.utoronto.ca/jcb/home/documents/pandemic.pdf).
32
Organizational ethics
Jennifer L. Gibson, Robert Sibbald, Eoin Connolly, and Peter A. Singer
A hospital has faced significant resource constraints over the last five years. After making significant cuts in administrative costs, the hospital senior management team is exploring revenue-generating options to help fund its clinical programs. One option under consideration involves renting cafeteria space to a popular fast-food restaurant. In the past, hospital cardiologists and endocrinologists have opposed similar proposals on the grounds that offering fast food is inconsistent with the hospital’s patient care mission and its national reputation in the treatment of cardiac disease and non-insulin-dependent diabetes. The Clinical Operations Committee, which includes clinical and administrative leaders from across the organization, considers whether it should support or oppose the current proposal.
Mr. A is a 62-year-old male, who presents at the emergency department with severe chest pain. Mr. A is stabilized and diagnostic tests indicate triple vessel coronary artery disease. Bypass surgery is recommended. Prior to admission, it is discovered that Mr. A is a non-resident on a short visit to his son, who immigrated four years ago. As a nonresident, Mr. A is not covered by the national public health insurance plan and he did not purchase medical insurance for his trip. Neither he nor his son has the financial resources to pay for the bypass surgery. Although Mr. A is sufficiently stable to survive a flight home, he would not have access to the necessary medical treatment in his home country. The treating clinician wonders if the hospital should cover the cost of the surgery.
What is organizational ethics?
Organizational ethics is concerned with the ethical issues faced by managers and governors in healthcare organizations and the ethical implications of
organizational decisions and practices on patients, staff, and the community. Organizational ethics can be defined as ‘‘the organization’s efforts to define its core values and mission, identify areas in which important values come into conflict, seek the best possible resolution of these conflicts, and manage its own performance to ensure that it acts in accord with espoused values’’ (Pearson et al., 2003, p. 32). Organizational mission and value statements describe how the organization proposes to conduct its activities and outline a set of standards according to which the organization’s actions and decisions are to be judged (Spencer et al., 2000; Boyle et al., 2001). Thus, the mission and values are sometimes described as the ‘‘moral compass’’ of the organization (Pearson et al., 2003).
Organizational ethics has been described as the next step in the evolution of bioethics, which has focused primarily on ethical issues in direct patient care (Potter, 1996; Bishop et al., 1999). Organizational ethics focuses on the business aspects of healthcare, the multiple stakeholder interests (e.g., patients, staff, suppliers, other providers, the community) affected by organizational decisions and actions, and the organization’s ‘‘total mission,’’ which includes the goal of patient care as well as other important goals such as financial sustainability, staff wellbeing, and public accountability (Hall, 2000; Spencer et al., 2000). There are three main categories of organizational ethics issues: (i) ethical issues emerging in clinical care as a result of decisions taken elsewhere in the organization, (ii) ethical issues in clinical care with wide-reaching organizational
243
