
The Cambridge textbook of bioethics
.pdf
114R. Mykitiuk and J. Nisker
lymphomas, and breast cancer (Nisker et al., 2006). Women who have received chemotherapy, for example, may have a dramatic decrease in the number of ovarian Follicles that remain, and thus the normal attrition rate frequently causes these women to develop ovarian failure in their thirties (Sklar et al., 2006).
Ethics
Commercialization
Commercialization and commodification of gametes, and commercial gestational agreements, offend a number of ethical precepts including respect for human integrity and dignity through the non-commodification and non-commercialization of the person, her or his bodily parts, tissues, substances and processes; protection of vulnerable persons from coercion or inducement; and respect for the patient–physician relationship by avoiding a conflict of interest between the two parties (Royal Commission on New Reproductive Technologies, 1993; Nisker and White, 2005).
‘‘Donation’’ is an ethically charged term in that, until the 1990s, in most countries, ‘‘donors’’ of sperm and oocytes have been paid in the range of $100 for sperm and between $1500 and $5000 for oocyte donation (Nisker, 1996, 1997, 2001; Gurmankin, 2001). In addition, oocyte ‘‘donors’’ are almost always economically disadvantaged women who either sell their eggs to support their family or pay tuition, or who barter half of their oocytes in order to undergo an IVF cycle (Royal Commission on New Reproductive Technologies, 1993; Nisker, 1996, 1997, 2001; Mykitiuk and Wallrap, 2002). The ethical problems of these practices is reflected in their prohibition by law in most Western European countries such as France, the UK, and Germany, as well as Australia, New Zealand, and Canada, amongst other countries (see the list of relevant legislation at the end of the chapter). In some of these countries, sperm donors may be offered reimbursement of expenses, and occasionally compensation for their time (Daniels et al., 2006).
Informed choice
Free and informed choice requires that the patient must be informed about the benefits and risks of treatment, alternative courses of action, and the consequences of not having the treatment (Mykitiuk and Wallrap, 2002). This includes the provision of sufficient information for the patient to be able to both understand and appreciate the chances of having a child for that particular patient in that particular infertility clinic, including clarification of the meaning of success rates (as to biochemical pregnancy or live birth), and the specific risks of treatment inherent for that patient (in general and in that particular clinic). Patients should also be informed about the potential for multiple births to have physical and cognitive consequences for children, as well as social consequences for them and their families and financial costs (Barrett and Bocking, 2000a,b; Elster, 2000; Mykitiuk and Wallrap, 2002; Adamson and Baker, 2004).
A free choice process is difficult to ensure for sisters and close friends of infertile women who have been asked to become oocyte ‘‘donors’’ or gestational carriers for them (Rodgers et al., 1997; Ber, 2000). These women have indicated that they would feel that they were a bad sister or a bad friend if they did not comply with the request. Further, even in the best-case scenarios for altruistic oocyte donation or gestational agreements, ethical problems remain.
Informed choice is particularly difficult for those who are soon to undergo cancer treatment (Nisker et al., 2006). In the case of girls and adolescent women, a substitute decision maker, usually a parent or guardian, may base their decision on the belief that the child will want to be a mother. As with adult women, decision making is also complicated by the fact that delaying cancer treatment in order to retrieve and cryopreserve oocytes (or for adult women to possibly undergo IVF to freeze embryos) may be problematic to the success of the cancer treatment. Finally, although encouraging, the success of new techniques such as oocyte vitrification (Lucena et al., 2006) and in vitro maturation (Rao and Tan, 2005) requires further study.
Assisted reproduction |
115 |
|
|
Free and informed choice for research purposes may also be complex in that it is difficult for a woman undergoing fertility treatment not to agree to a request by her physician to participate in research, as she may perceive that the research must be important to the physician or it would not have been offered, and that a negative decision may compromise her clinical care (Sherwin, 1992, 1998; Kenny, 1994; Nisker and White, 2005). Particularly regarding stem cell research, women who ‘‘volunteered’’ to undergo IVF to provide eggs may be coerced (Cyranoski, 2004; Nisker and White, 2005; Chang, 2006).
Access
Access to assisted reproduction is constrained in some jurisdictions by financial considerations and other eligibility criteria. Without public funding, access to IVF is generally limited to economically advantaged women/couples. In most countries where a publicly funded healthcare system exists, access to infertility treatment, including IVF and intracytoplasmic sperm injection, is provided. In some countries, such as Australia, IVF is publicly funded for the number of cycles it takes for the woman to complete her family, while in most Western European countries and Israel, some restrictions are placed on the maximum number of cycles or the maximum number of children for which publicly funded IVF is available (BirenbaumCarmeli, 2004). Canada is an exception among countries with publicly funded healthcare systems in that no public funding is provided for IVF and corollary therapies, with the exception of the province of Ontario, where IVF is provided for blocked Fallopian tubes only (Mykitiuk and Wallrap, 2002; Nisker, 2004).
Access may also be restricted by the eligibility criteria used by physicians and clinics. Although the access criteria typically center on the potential benefits and risks to the health and safety of participants based on medical factors, including the condition of infertility and the participant’s age, some physicians and clinics use non-medical criteria.
These may include a woman’s or couple’s ability to parent, which may be perceived to be limited by physical or cognitive disability (Gurmankin et al., 2005), low income (Gurmankin et al., 2005), marital status (Vandervort, 2006), and sexual orientation (Mykitiuk and Wallrap, 2002; Peterson, 2005). Individuals and couples may also face barriers to access based on race and ethnicity (Mykitiuk and Wallrap, 2002; Gurmankin et al., 2005). These non-medical barriers to access are ethically suspect, often relying on discriminatory personal or social prejudices and may be subject to human rights challenges (Mykitiuk and Wallrap, 2002).
Genetic determination
Assisted reproduction is now used to determine the potential characteristics of children (Mykitiuk et al., 2006) through PGD (Handyside et al., 1990; Nisker and Gore-Langton, 1995) and PGH (Renwick et al., 2006). Focus on genetic characteristics of an embryo has been used not only to avoid a specific genetic characteristic but also to enhance the chance a child will have a particular characteristic (Pennings et al., 2002). To a limited degree, couples have for more than 10 years purchased sperm from genius sperm banks and oocytes from ‘‘Ron’s Angels’’ to enhance the chances of an ‘‘intelligent’’ or conventionally ‘‘beautiful’’ child (Nisker and Gore-Langton, 1995; Nisker, 2002). The use of these strategies, as well as PGD and PGH for such purposes, raises ethical issues about the proper use of medical technology and the physician’s role in providing enhancement rather than therapeutic benefits (Nisker, 2002). The use of PGD to avoid specific genetic conditions and diseases is also considered by some to be ethically problematic, resting on discriminatory ideas of disability and difference (Parens and Asch, 1999; Shakespeare, 1999; Taylor and Mykitiuk, 2001; Mykitiuk, 2002a). Also morally complex is the use of PGD to detect embryos of a specific histocompatibility in order to produce a savior sibling for an existing child (Pennings et al., 2002). The potential use of PGD to ascertain embryos that will result in a child who is

116R. Mykitiuk and J. Nisker
deaf (Levy, 2002) or who has Duchene’s dwarfism (Nunes, 2006) is also ethically problematic.
Social factors
Assisted reproduction also makes possible the creation of novel social arrangements: postmortem insemination, virgin births, postmenopausal pregnancy, multiple parents, anonymous genetic parents, and embryos conceived at one time being born at different times or to different people (Mykitiuk, 2002b). The use of assisted reproduction, therefore, has implications for kinship and also the understanding of the legal, social, and emotional bonds created by heredity and the consequences presumed to ensue from processes of conception and birth (Mykitiuk, 2002b). Social factors include the inappropriate continuation of a male-dominant work ethic that sees women as less valuable employees if they want to become pregnant. This coerces women to delay pregnancy and risk infertility rather than create an obstacle to career advancement or employment.
Law and policy
Western European countries, such as France, Sweden, the UK, and Germany, as well as Australia, New Zealand, Canada, and Israel, have enacted legislation governing assisted reproduction (see the legislation listed at the end of this chapter). However, in many jurisdictions, including the USA and eastern Europe, these practices remain largely unregulated by law. ‘‘Reproductive tourism’’ can result when patients and clinicians are prohibited by law from accessing certain practices in their own jurisdiction (Storrow, 2005).
The law generally sets out prohibited practices, usually enforceable through criminal sanctions (e.g., payment for gestational arrangements and oocytes in most jurisdictions) and provides a regulatory framework within which permissible practices must be carried out (e.g., the storage, handling, and use of reproductive materials, and a registry of gamete donors). In addition, national legislation may establish a regulatory or oversight
body whose responsibility it is to license, inspect, and monitor all human reproduction clinics. Further, domestic human rights legislation may prohibit discrimination: for example, a single or disabled woman, or lesbian couple being denied access to IVF or donor conception for non-medical reasons.
In most countries where legislation regarding assisted reproduction exists, it is illegal to create an embryo for research purposes (e.g., Canada, France, Germany, and Sweden; see legislation at the end of this chapter). By contrast, in the UK, it is legal to create an embryo for research if legal consent has been given, provided one is licensed to do so (Human Fertilization and Embryology Act, 1990). However, in some countries, such as Canada, France, and Australia, research can be performed on embryos that were created for reproductive purposes but are no longer required for this purpose, pursuant to a license and with consent of the embryo donor. In most countries with legislation, there are also prohibitions on reproductive cloning, ectogenesis, and germ-line modification. For more on issues related to stem cell research and therapeutic cloning, see Chs. 21 and 31.
Professional practice policies are developed in order to set the standard of care by which clinicians should practice in order to provide optimal therapeutic outcome and minimum risk to their patients. As policies impact not only patients, clinicians, and researchers but also social relationships and institutions, good policy making must involve voices and perspectives of all parties who are affected by that policy, as well as those of the general public. In the development of such policies, it should be appreciated that women more than men are affected by assisted reproductive practices (Royal Commission on New Reproductive Technologies, 1993).
How should I approach assisted reproduction in practice?
Understanding that assisted reproduction is an ethically complex area of medicine, whether the

clinician is a family physician, general gynecologist, fertility specialist, nurse, social worker, or psychologist, is essential in its practice. Family physicians and general gynecologists may become skilled in many aspects of infertility investigation, including history taking, physical examination, assessment of semen and ovulation characteristics, tubal patency, as well as parameters of general health. As referring physicians, these individuals should be aware of the infertility clinics that provide optimal care. Infertility specialists have the obligation to be educated in all currently clinically proven investigations and treatments. These specialists have an obligation to keep accurate records and report their findings in a manner in which the pregnancy and treatmentcomplication rates are clearly apparent to patients and referring physicians. All clinicians have the obligation to provide a free and comprehensive informed choice process.
Clinicians need to be mindful of the fact that that there may be both national and state/territorial/ provincial legislation governing assisted human reproductive practices. Access to appropriate infertility treatment is problematic in countries such as Canada and the USA where, unlike Western European countries, Australia, and Israel, IVF is not covered under a publicly funded healthcare system, and advocacy for socioeconomically disadvantaged patients is required. Professional practice guidelines should be developed in order to have uniform reporting of data and to advise both fertility specialists and referring physicians as to the standards of care.
The case
The ethical issues embedded in the case include the inability of some women/couples, because of their financial or social situation, to access assisted reproduction and the informed choice process, particularly considering clinical factors (e.g., age of the woman) that may allow for more risky treatment strategies and require different information
Assisted reproduction |
117 |
|
|
in the informed choice process. The fact that Ms. F is 38 years of age may allow ethical practice to commence infertility investigation if after one year pregnancy does not occur (or slightly before because of irregular ovulation, as with Ms. F), as well as permitting the transfer of more than one or two embryos during the treatment cycle. This couple should be made aware in the informed choice process that their chance of having a child, biologically related to them, through assisted reproduction or otherwise is much lower than the overall statistics reported by infertility clinics. Further, the additional risk of multiple pregnancy, and the physical and cognitive risks to the child inherent in multiple births, need to be addressed, as the option of more than two embryos being transferred will likely be offered. Ms. F and Mr. G, as all women/couples in their age group (and indeed all women/couples), should be counseled about the possibility of adoption, and about the fact that in most ‘‘developed’’ countries, access to an infant through adoption is very limited, and access to international adoption is restricted to the financially well off.
REFEREN CES
Abramov, Y., Elchalal, U., and Schenker, J. G. (1999). Severe OHSS: an ‘‘epidemic’’ of severe OHSS: a price we have to pay? Hum Reprod 14: 2181–3.
Adamson, D. and Baker, V. (2004). Multiple births from assisted reproductive technologies: a challenge that must be met. Fertil Steril 81: 517–22.
Alsalili, M., Yuzpe, A., Tummon, I., et al. (1995). Cumulative pregnancy rates and pregnancy outcome after in-vitro fertilization: 5000 cycles at one centre. Hum Reprod 10: 470–4.
Barrett, J. and Bocking, A. (2000a). The SOGC Consensus Statement: Management of Twin Pregnancies Part 1.
Soc Obstet Gynaecol Canada 22: 619–29.
Barrett, J. and Bocking, A. (2000b). The SOGC Consensus Statement: Management of Twin Pregnancies Part 2.
Soc Obstet Gynaecol Canada 22: 607–10.
Ber, R. (2000). Ethical issues in gestational surrogacy.
Theor Med Bioethics 21: 153–69.

118 R. Mykitiuk and J. Nisker
Birenbaum-Carmeli, D. (2004). ‘‘Cheaper than a newcomer’’: on the social production of IVF policy in Israel.
Soc Health Illness 26: 897–92.
Blake, D., Proctor, M., Johnson, N., and Olive, D. (2002). Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev 2: CD002118.
Buckett, W., Chian, R. C., and Tan, S. L. (2005). Can we eliminate severe ovarian hyperstimulation syndrome? Not completely. Hum Reprod 20: 2367 (author reply 2367–8).
Budev, M. M., Arroliga, A. C., and Falcone, T. (2005). Ovarian hyperstimulation syndrome. Crit Care Med 33 (Suppl. 10): S301–6.
Byrne, J. (1999). Infertility and premature menopause in childhood cancer survivors. Med Pediatr Oncol 33: 24–8.
Casper, R. F. and Mitwally, M. F. (2006). Review: aromatase inhibitors for ovulation induction. J Clin Endocrinol Metab 91: 760–71.
Chang, S. (2006). Investigations document still more problems for stem cell research. Science 311: 754–5.
Cyranoski, D. (2004). Korea’s stem-cell stars dogged by suspicion of ethical breach. Nature 429: 3.
Daniels, K., Feyles, V., Nisker, J., et al. (2006). Semen donation: Implications of Canada’s Assisted Human Reproduction Act, 2004 on recipients, donors, health professionals, and institutions. J Obstet Gynaecol Canada 28: 608–15.
Delhanty, J. D. E., Griffen, D. K., Handyside, A. H., et al. (1993). Detection of aneuploidy and chromosomal mosaicism in human embryos during preimplantation se determination by fluorescent in situ hybridization (FISH). Hum Mol Genet 2: 1183–5.
Elster, N. (2000). Less is more: the risks of multiple births.
Fertil Steril 74: 17–23.
Gurmankin, A. D. (2001). Risk information provided to prospective oocyte donors in a preliminary phone call.
Am J Bioethics 1: 3–13.
Gurmankin, A. D., Caplan, A. L., and Braverman, A. M. (2005). Screening practices and beliefs of assisted reproductive technology programs. Fert Steril 88: 61–7.
Handyside, A. H., Kontogianni, E. H., Hardy, K., and Winston, R. M. (1990). Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 344: 768–70.
Holzer, H., Casper, R., and Tulandi, T. (2006). A new era in ovulation induction. Fert Steril 85: 277–84.
Horsey, K. (2005). European Parliament calls for egg trade ban. IVF.net (http://www.ivf.net/content/page-o1326. html) accessed 10 August 2006.
Human Fertilization and Embryology Act 1990. (London: The Stationary Office).
Kenny, N. P. (1994). The ethics of care and the patient– physician relationship. Ann R Coll Phys Surg Canada 27: 356–8.
Levy, N. (2002). Deafness, culture, and choice. J Med Ethics 28: 284–5.
Lucena, E., Bernal, D. P., Lucena, C., et al. (2006). Successful ongoing pregnancies after vitrification of oocytes. Fert Steril 85: 108–11.
Messinis, I. E. (2005). Ovulation induction: a mini review.
Hum Reprod 20: 2688–97.
Min, J. K., Claman, P., and Hughes, E. (2006). Guidelines for the number of embryos to transfer following in vitro fertilization. J Obstet Gynaecol Can 28: 799–813.
Mishell, |
D. R., Jr. |
(2001). Infertility. In Comprehen- |
sive |
Gynecology, |
4th edn, ed. M. A. Stenchever, |
W. Droegemueller, A. L. Herbst et al., St. Louis: Mosby, pp. 1169–215.
Mullis, K. B. and Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction.
Meth Enzymol 155: 335–50.
Mykitiuk, R. (2002a). Public bodies, private parts: genetics in a post-Keynesian era. In Privatization, Law and the Challenge to Feminism, ed. B. Cossman and F. Fudge. Toronto: University of Toronto Press, pp. 311–54.
Mykitiuk, R. (2002b). Beyond conception: legal determinations of filiation in the context of assisted reproductive technologies. Osgoode Hall Law J 39: 771–815.
Mykitiuk R. and Wallrap, A. (2002). Regulating reproductive technologies in Canada. In Canadian Health Law and Policy, 2nd edn, ed. J. G. Downie, T. A. Caulfield, and C. Flood. Markham: Butterworth, pp. 367–431.
Mykitiuk, R., Turnham, S., and Lacroix, M. (2006). Prenatal diagnosis and pre-implantation genetic diagnosis: legal and ethical issues. In: Genetic Testing: Care, Consent and Liability, ed. N. Sharpe and R. Carter. Hoboken, NJ: John Wiley, pp. 189–218.
Nachtigall, R. D., Becker, G., Friese, C., and Butler, A. (2005). Parents’ conceptualization of their frozen embryos complicates the disposition decision. Fert Steril 84: 431–4.
Newton, C., McDermid, A., Tekpetey, F., and Tummon, I. (2003). Embryo donation: attitudes toward donation
Assisted reproduction |
119 |
|
|
procedures and factors predicting willingness to donate.
Hum Reprod 14: 878–84.
Nisker, J. (1996). J’s ladders or how societal situation determines reproductive therapy. Hum Reprod 11: 1162–7.
Nisker, J. (1997). In quest of the perfect analogy for using in vitro fertilization patients as oocyte donors. Women’s Health Issues 7: 241–7.
Nisker, J. (2001). Physician obligation in oocyte procurement. Am J Bioethics 1: 22–3.
Nisker, J. (2002). There is no gene for the human spirit.
J Obstet Gynaecol Canada 24: 209–10.
Nisker, J. (2004). Anniversary of injustice: April Fool’s Day, 1994. J Obstet Gynaecol Canada 26: 321–2.
Nisker, J. and Gore-Langton, R. E. (1995). Pre-implantation genetic diagnosis: a model of progress and concern.
J Obstet Gynaecol Canada 5: 247–62.
Nisker, J. and White, A. (2005). The CMA Code of Ethics and the donation of fresh embryos for stem cell research. CMAJ 173: 621–2.
Nisker, J., Baylis, F., and McLeod, C. (2006). Preserving the reproductive capacity of girls and young adolescent women with cancer: informed choice. Cancer 107 (suppl 7): 1686–9.
Nunes, R. (2006). Deafness, genetics and dysgenics. Med Health Care Philos 9: 25–31.
Parens, E. and Asch, A. (1999). The disability rights critique of prenatal genetic testing: reflections and recommendations. Hastings Cent Rep 29 (Special suppl. 5).
Pastor, C. L., Vanderhoof, V. H., Lim, L.-C., et al. (2005). Pilot study investigating the age-related decline in ovarian function of regularly menstruating normal women. Fertil Steril 84: 1462–9.
Pennings, G., Schots, R., and Liebaers, I. (2002). Ethical considerations on preimplantation genetic diagnosis for HLA typing to match a future child as a donor of haematopoietic stem cells to a sibling. Hum Reprod 17: 534–8.
Peterson, M. M. (2005). Assisted reproductive technology and equity of access issues. J Med Ethics 31: 280–5.
Rao, G. D. and Tan, S. L. (2005). In vitro maturation of oocytes. Semin Reprod Med 23: 242–7.
Renwick, P. J., Trussler, J., Ostad-Saffari, E., et al. (2006). Proof of principle and first cases using preimplantation genetic haplotyping: a paradigm shift for embryo diagnosis. Reprod Biomed Online 13: 110–19.
Rivard, G. and Hunter, J. (2005). The Law of Assisted Human Reproduction. Markham, ON: Lexis Nexis.
Rodgers, S., Baylis, F., Lippman, A., et al. (1997). Practice Guidelines No. 5: Preconception Arrangements. Ottawa: Society of Obstetricians and Gynaecologists of Canada (http://sogc.medical.org/SOGCnet/sogc_docs/common/ guide/pdfs/ps59.pdf).
Royal Commission on New Reproductive Technologies [Patricia Baird, Chair] (1993). Proceed With Care: Final Report. of the Royal Commission on New Reproductive Technologies. Ottawa: Supply and Services Canada.
Shakespeare, T. (1999). Losing the plot? Medical and activist discourses of contemporary genetics and disability. Sociol Health Illness 21: 669–88.
Sherwin, S. (1992). No Longer Patient: Feminist Ethics and Health Care. Philadelphia, PA: Temple University Press.
Sherwin, S. (1998). A relational approach to autonomy in healthcare. In The Politics of Women’s Health: Exploring Agency and Autonomy, coordinator S. Sherwin. Philadelphia, PA: Temple University Press, pp. 19–47.
Sklar, C. A., Mertens, A. C., Mitby, P. et al. (2006). Premature menopause in survivors of childhood cancer: a report from the childhood cancer survivor study.
J Natl Cancer Inst 98: 890–6.
Steptoe, P. C. and Edwards, R. G. (1978). Birth after the reimplantation of a human embryo. Lancet ii: 366.
Storrow, R. (2005). Quests for conception: fertility tourists, globalization and feminist legal theory. Hastings Law J 57: 295–330.
Taylor, K. and Mykitiuk, R. (2001). Genetics, normalcy and disability 2(3). ISUMA [Can J Policy Res] 2: 65–71.
Trounson, A. and Mohr, L. (1983). Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 305: 707–9.
Vandervort, L. (2006). Reproductive choices: screening policy and access to the means of reproduction 28.
Hum Rights Quart 28: 438–64.
Van Steirteghem, A., Nagy, Z., Liu, J., et al. (1994). Intracytoplasmic sperm injection. Baillie`res Clin Obstet and Gynaecol 8: 85–93.
Verlinsky, Y., Ginsberg, N., Lifchez, A., et al. (1990). Analysis of the first polar body: preconception genetic diagnosis. Hum Reprod 5: 826–9.
Younglai, E. V., Foster, W. G., Hughes, E. G., Trim, K., and Jarrell, J. F. (2002). Levels of environmental contaminants in human follicular fluid, serum, and seminal plasma of couples undergoing in vitro fertilization. Arch Environ Contam Toxicol 43: 121–6.

120 R. Mykitiuk and J. Nisker
Yuzpe, A. A., Brown, S. E., Casper, R. F., et al. (1989). Transvaginal, ultrasound-guided oocyte retrieval for in vitro fertilization. J Reprod Med 34: 937–42.
LEGISLATION
Australia
Artificial Conception Act 1985 (W.A.).
Reproductive Technology (Clinical Practices) Act 1988 (S.A.).
Human Reproductive Technology Act 1991 (W.A.).
Infertility Treatment Act 1995 (Vic.).
Infertility Regulations Act 1997 (Vic.).
Research Involving Human Embryos Act 2002 (Cth.).
Australian Government, Department of Health and
Aging. http://www.health.gov.au/internet/ministers/
publishing.nsf/content/health-mediarel-yr2005-ta-abb
048.htm?OpenDocument&yr¼2005&mth¼5 (accessed
10 August 2006).
Canada
Assisted Human Reproduction Act, S.C. 2004, c.2.
France
Art. L152–1 to L152–10, L673–5 C. sante´ publ.
Art. 16–7 C. civ.
Art. 311–19, 311–20 C. civ.
Art. 511–18, 511–119 C. pe´n.
Germany
Embryo Protection Act (Embryonenschutzgestz – ESchG) (1990). Federal Law Gazette I, 13 December 1990, p. 2746.
Israel
Public Health (Extra-Corporeal Fertilization) Regulations 1987 (Official Gazette, Regulations, 5035 p. 978, 11 June 1987).
Ova Donation for Extra–Corporeal Fertilization Act 2001 (Official Gazette, Statutory Bills, no. 2985 p. 537, 5 March 2001).
New Zealand
Human Assisted Reproductive Technology Act (N.Z.),
2004/9.
Sweden
In Vitro Fertilisation Act SFS 1988: 711.
The Act Concerning Measures for Research or Treatment Involving Fertilised Human Ova, SFS 1991: 115.

17
Respectful involvement of children in medical decision making
Nuala Kenny, Jocelyn Downie, and Christine Harrison
H is a bright, loving, 11-year-old child who has been treated for osteosarcoma. Her left arm has been amputated and she was given a course of chemotherapy. She has been cancer free for 18 months and is doing well in school. She is self-conscious about her prosthesis and sad because she had to give away her cat, Snowy, to decrease her risk of infection. Recent tests indicate that the cancer has recurred and metastasized to her lungs. Her family is devastated by this news but do not want to give up hope. However, even with aggressive treatment, H’s chances for remission are less than 20%. H adamantly refuses further treatment. In the first round of treatment, she had initially acquiesced to the treatment but ultimately struggled violently when it was administered. She distrusts her healthcare providers and is angry with them and her parents. She protests, ‘‘You already made me give up Snowy and my arm. What more do you want?" Her parents insist that treatment must continue. At the request of her physician, a psychologist and psychiatrist conduct a capacity assessment. They agree that H is incapable of making treatment decisions; her understanding of death is immature and her anxiety level very high. Nursing staff are reluctant to impose treatment. In the past, H’s struggling and the need to restrain her caused them serious concern.
What is respectful involvement of children in medical decisions?
Respectful involvement of children in medical decisions requires respect for parental authority
and family context as well as careful attention to the communicative and developing decisional needs and abilities of the child.
Why is it important to respectfully involve children in medical decision making?
Ethics
Children have traditionally been excluded from medical decision making. Inclusion was seen to be dependent upon autonomy (the capacity for selfdetermination) and children were considered non-autonomous. Children were seen as needing substitute decision makers, and parents were generally turned to as substitutes with the right and responsibility to make medical decisions for their children.
However, ethical analysis of the involvement of children in medical decision making has evolved and at least two significant changes must be noted. Firstly, it was recognized that children from infants to teens have dramatically differing levels of capacity for decision making. Three general categories of children were described: those lacking decisional capacity, those with developing decisional capacity, and those with developed decisional capacity (American Academy of Pediatrics, 1995). The focus of respectful involvement of children in medical
An earlier version of this chapter has appeared: Harrison, C., Kenny, N. P., Sidarous, M., and Rowell, M. (1997). Involving children in medical decisions. CMAJ 156: 825–8.
121

122 N. Kenny, J. Downie, and C. Harrison
decisions became fixed on decisional maturity. Differing levels of inclusion in decision making, relating to these different categories of decisional capacity, came to be seen as necessary.
The North American standard for clinical decision making, for instance, evolved into parental consent/permission for the first category, the child’s consent for the third category, and parental consent/permission and child assent for the second category (Canadian Paediatric Society and Bioethics Committee, 2004). It was claimed that assent recognizes the developing capacity of children in this second category. Assent refers to an agreement with a decision or course of action as distinct from consent, which refers to an informed and voluntary choice with respect to a decision or course of action. The capacity to assent assumes a lower standard for each of the elements of informed choice (freedom, information, and decision-making capacity) than the capacity to consent. Assent was said to demonstrate respect for the child’s developing autonomy, and parental consent/permission was said to protect the child from assuming unreasonable risks (Rossi et al., 2003).
However, a second change in thinking occurred as assent has presented both practical and theoretical difficulties. Bulford (1997) has identified the lack of standards by which to judge competency and the ad hoc nature of assessment of the child’s capacity for participation in the decision. Kenny and Skinner (2003) have noted that identifying the appropriate role for the child is complex. Among other things, it requires an understanding of the neurodevelopmental capacities of children that are necessary for decision making. On a substantive level, the role of assent has become contested, as demonstrated in a special issue of the American Journal of Bioethics in 2003. Serious questions have been raised. Is assent required from the child? Is dissent morally binding? If so, in what way is dissent different from competent refusal? Is respectful and meaningful involvement of the child about more than decisional autonomy?
If children are to be treated with respect in medical decisions, it is imperative to have clarity
regarding children’s roles and to be more attentive to the developing capacities of child participants. Simpson (2003) and Baylis et al. (1999) have suggested that at least four categories of children can be described based on an understanding of the various developing capacities of the child: (i) children with no communication (neonates and young children); (ii) children with some communication but no decisional maturity (younger school-aged children); (iii) children with some communication and developing decisional authority (older schoolaged children); and (iv) children with decisional maturity (i.e., equivalent to adult capacity for decisional maturity and mature and emancipated minors).
Building on this, it is argued that the appropriate involvement of the child depends upon an assessment of the child’s decision-making capacity, what the child can understand, what the child can benefit from being told (even if not capable of making a decision), what the child wants to know, and what the child needs to know in order to participate appropriately (Baylis et al. 1999; Kenny and Skinner 2003).
For example, there is no role in decision making or communication (other than comforting) for an infant. A mature minor, at the other extreme, must be told everything that a competent adult would be told and has the moral authority to make the decision. A child with no decisional capacity, but good language comprehension, should be told what is going to happen to him or her. For instance, it can be morally necessary to share information even where the child has no decisional authority and it can be morally required to ask a child’s opinion about various options even if the child may not yet have developed decisional authority. In other words, information sharing should be distinguished from ascribing decisional authority, and the objectives of sharing information and seeking opinions from the child can vary according to the capacities of the child.
Respectful involvement of the child, therefore, involves attention to the communicative as well as decisional needs and abilities of the child. Further,

it requires careful and respectful attention to the family context of the child. It has been argued that a family-centered ethic is the best model for understanding the interdependent relationships that are at play in the clinical context. A familycentered approach considers the effects of a decision on all family members, their responsibilities toward one another, and the burdens and benefits of a decision for each member, while acknowledging the special vulnerability of the paediatric patient (Nelson and Nelson 1995; Committee on Pediatric Emergency Medicine, AAP Policy, and American Academy of Pediatrics, 2003). This approach presents special challenges for the healthcare team when there is disagreement between parent(s) and a child. Such a situation raises profound questions about the nature of the physician– patient relationship in pediatric practice. In the care of competent adults, the physician’s primary relationship is with the patient. The patient’s family may be involved in decision making (i.e., may participate in discussions of diagnosis, prognosis, and treatment options), but it is the patient who defines the bounds of such involvement and it is the patient who has the authority to make any and all decisions. The care of children, by comparison, involves a family-centered relationship in which the child, the parents, and the physician all have a necessary involvement. When there is disagreement between parent and child, the physician may experience some moral discomfort, feeling caught somewhat between the child and parent. The goal, however, must be to ensure the pursuit of the child’s best interests and the respectful involvement of the child in the decision-making process (in a fashion appropriate to his or her capacities).
The family-centered approach can also present special challenges for the healthcare team when there is disagreement between the parent(s) and the team with respect to what is in the child’s best interests. The assumption that parents best understand what is in the best interest of their child is usually sound. However, situations can arise in which the parents’ distress prevents them from understanding or appropriately weighting their
Involving the child in decision making 123
child’s concerns and wishes. Simply complying with the parents’ wishes in such cases is inadequate. Furthermore, the family-centered approach must not be taken to allow family members’ interests to trump the child’s interests. Rather, it must be seen as recognizing the fact that children are embedded in their families and the interests of the child can be seen as bound up with the interests of other family members. The child’s interests must always be the basis for a decision to be followed by the healthcare team. This approach does not discount the parents’ concerns and authority but it does recognize the child (albeit as a member of a family) as the particular patient to whom the healthcare team has a primary duty of care.
Law
Apart from exceptional circumstances (e.g., emergency), medical treatment must only be provided or withheld on the basis of a legally valid consent or refusal. To be legally valid, a consent or refusal of medical treatment must be free and informed. It must also be made by a person with appropriate authority who is deemed capable of making the treatment decision, that is, capable of understanding the nature and consequences of the recommended treatment, alternative treatments, and no treatment. If the patient is capable, then the patient has decisional authority. If the patient is a child, parents or legal guardians generally have the legal authority to act as substitute decision makers.
A child’s substitute decision maker is obliged to make treatment decisions in the best interests of the child. Healthcare providers who believe that a substitute’s decisions are not in the child’s best interests should turn to child welfare authorities. Through child welfare legislation, the courts can ensure the appointment of a different substitute decision maker if they believe the current substitute to be acting not in accordance with the child’s best interests (legislation usually provides guidance on the content of ‘‘best interests’’). Courts also have the power to authorize or refuse to authorize treatment if they believe such action to be in the