
- •Вопросы для подготовки к экзамену по дисциплине «Техногенные системы и экологический риск»
- •Характеристика доклада «Пределы роста» в современных условиях.
- •Угрозы биологическому разнообразию.
- •Неустойчивый рост населения.
- •Неустойчивое сельское хозяйство и продовольственные системы.
- •Негативное воздействие на жизнедеятельность людей и функционирование объектов опасных метеорологических явлений.
- •Опасные гидрологические процессы и явления, их негативное воздействие на жизнедеятельность людей и функционирование объектов
- •Пожары в природных экосистемах.
- •Поражающие факторы природных пожаров, характер их проявления и действия на людей, животных, растения, объекты экономики и окружающую среду.
- •Техногенные опасности и их поражающие факторы. Классификация, номенклатура и единицы измерения поражающих факторов физического и химического действия.
- •Промышленные аварии, катастрофы и их последствия. Уровни производственных аварий.
- •Общие понятия об основах теории развития и прекращения горения. Этапы развития пожара. Зоны горения, теплового воздействия, задымления, токсичности. Опасные для человека факторы пожара.
- •Взрыв. Факторы техногенных взрывов, приводящих к поражению людей, разрушению зданий, сооружений, технического оборудования и загрязнению окружающей среды.
- •Классификация объектов по их пожаро- и взрывоопасности. Показатели пожаро- и взрывоопасности веществ и материалов.
- •Источники радиации и единицы ее измерения. Классификация радиационных аварий.
- •Единицы измерения радиоактивности:
- •Классификация опасных химических веществ по степени токсичности, способности к горению и воздействию на организм человека.
- •Характеристика классов опасности химических веществ по степени их воздействия на организм человека.
- •Особенности загрязнения местности, воды, продовольствия в случае возникновения аварий с выбросом опасных химических веществ.
- •Характеристика плана локализации и ликвидации аварийных ситуаций.
- •Свойства систем, связанные с их строением.
- •Свойства, связанные с функционированием систем
- •Динамические системы.
- •Природно-хозяйственные системы.
- •Систематизация природно-хозяйственных систем.
- •Устойчивость природно-хозяйственных систем и экологические последствия их деятельности.
- •Общий анализ экологического риска.
- •Актуальность применения экологических рисков.
- •Классификация рисков.
- •Методические подходы к определению риска.
- •Применение в расчетах риска вероятностных структурно-логических моделей
- •Анализ различий между существующей в рф системой контроля качества окружающей среды и управлением на основе риска.
- •Концепция приемлемого риска.
- •Классификация экологических рисков.
- •Классификация рисков с точки зрения возможности их анализа.
- •Общая характеристика оценки риска.
- •Этап оценки риска - идентификация опасности.
- •Критерии приоритетности химических соединений для оценки риска
- •Оценка зависимости «доза-ответ».
- •Оценка экспозиции при оценке экологического риска.
- •Характеристика риска для здоровья.
- •Критерии оценки уровней риска.
- •Недостатки методологии оценки риска.
- •Преимущества использования технологий оценки риска.
- •Качественные методы оценки рисков. Общая характеристика.
- •Выполнение оценки рисков (гост р 58771-2019 Менеджмент риска. Технологии оценки риска).
- •6.1 Планирование оценки.
- •6.2 Управление информацией и разработка моделей.
- •6.3 Применение технологий оценки риска.
- •6.4 Мониторинг и пересмотр.
- •6.5 Применение результатов для поддержки решений.
- •6.6 Документирование, отчетность и передача информации.
- •Характеристика мозгового штурма.
- •Характеристика метода Делфи (Delphi).
- •Изучение опасности и работоспособности hazop (hazard and operability).
- •Структурированный метод «Что, если?» (swift).
- •Метод Исикавы («рыбья кость»).
- •Анализ рисков и критические контрольные точки (haccp - Hazard Analysis and Critical Control Points) (система менеджмента безопасности пищевой продукции)
- •Байесовский анализ рисков.
- •Количественные методы оценки экологического риска. Общая характеристика (р 2.1.10.1920-04).
- •Стратегия контроля уровней риска.
- •Сбор и анализ данных об источниках, составе и условиях загрязнения на исследуемой территории.
- •Выбор показателей опасности потенциально вредных факторов.
- •Методы ранжирования химических соединений.
- •Оценка канцерогенного риска воздействия канцерогенного агента с беспороговым механизмом действия (р 2.1.10.1920-04).
- •Величина поступления химического вещества.
- •Потенциальная доза токсикантов.
- •Среднесуточная потенциальная доза (р 2.1.10.1920-04).
- •Оценка риска канцерогенных эффектов (р 2.1.10.1920-04).
- •Оценка риска неканцерогенных эффектов при острых и хронических воздействиях.
- •Оценка риска при многосредовых, комбинированных и комплексных воздействиях.
- •Классификация уровней риска (р 2.1.10.1920-04).
- •Факторы, влияющие на надежность оценок риска.
- •Прогнозирование радиационной обстановки при аварии на аэс.
- •Построение «деревьев» в задачах расчета экологических рисков.
- •Оценка риска угрозы здоровью при воздействии пороговых токсикантов.
- •Оценка риска угрозы здоровью при воздействии беспороговых токсикантов.
- •Оценка потенциального риска здоровью населения, связанного с загрязнением окружающей среды.
- •Оценка экологических рисков деятельности организации.
- •Определение величины риска заболевания профессиональной вибрационной болезнью
- •Определение величины риска сокращения продолжительности жизни от воздействия радиоактивного загрязнения.
- •Оценка риска угрозы здоровью при воздействии радиации (нрб-99).
Свойства систем, связанные с их строением.
Система – совокупность (множество) элементов, между которыми имеются связи (отношения, взаимодействие). Таким образом, под системой понимается не любая совокупность, а упорядоченная. Если собрать вместе (объединить) одно- или разнородные элементы (понятия, предметы, людей), то это не будет системой, а лишь более или менее случайным смешением. Считать ту или иную совокупность элементов системой или нет, зависит также во многом от целей исследования и точности анализа, определяемой возможностью наблюдать (описывать) систему. Например, для проектировщика или испытателя автомобиль – система, а для пассажира – средство передвижения (вид транспорта). Имеется много определений понятия "система". Основная трудность состоит в том, что для полного определения этого понятия необходимо указать формальные признаки, позволяющие отличить систему от «несистемы». В качестве таких признаков наиболее часто используют: число взаимосвязанных элементов, способ описания поведения системы, отсутствие формальной математической модели функционирования и т. п. Эти признаки порождают множественность классификации систем. Так по числу элементов различают малые системы (10 – 103), сложные (104 – 107), ультрасложные (107 – 1020) и суперсистемы (1020 – 10200). По способу описания – детерминированные (поведение которых описывается однозначной функцией), статистические (поведение которых описывается в терминах распределения вероятностей) и нечеткие (поведение которых описывается нечеткими словесными высказываниями типа «достаточно высокий», «большой», «значительный» и т. п.).
Говоря о системе, будем выделять три основных признака:
1) система – это совокупность элементов, которые сами могут рассматриваться как системы; а исходная система – часть более общей системы, т.е. система рассматривается как часть иерархии систем. Например, автомобиль может рассматриваться как часть автомобильного предприятия или часть транспортных средств города и т. д.
2) для системы характерно наличие интегративных свойств, которые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности. Например, перевозить может автомобиль, измерять прибор, но не их отдельные части.
3) для системы характерно наличие существенных связей между элементами (скопление разрозненных частей не является системой).
Все три признака тесно связаны друг с другом, и наличие одного из них влечет за собой наличие двух остальных.
Системы с конечным числом величин, элементов и связей между ними называются ограниченными. Если одно из этих множеств бесконечно, то — неограниченными Физические системы ограничены, абстрактные могут быть неограниченными.
С точки зрения взаимодействия между системой и окружающей средой различают закрытые и открытые системы .
Таким образом, общая классификация систем должна учитывать многие аспекты. Наиболее известные классификационные схемы принадлежат С. Биру и К. Боулдингу. Первая классификация (по С. Биру), дополненная автором данной книги (последняя строка таблицы), приведена в таблице. Эта классификация учитывает два основных аспекта системы: сложность и способ описания. Вторая классификация (по К. Боулдингу) построена с учетом сложности организации систем.
Классификация систем по К.Боулдингу
1. Неживые системы.
1.1. Статические системы, называемые остовами
1.2. Простые динамические структуры с заданным движением, присущие окружающему нас физическому миру. Эти системы называют часовыми механизмами.
1.3. Кибернетические системы с управляемыми циклами обратной связи, называемые термостатами.
2. Живые системы.
2.1. Открытые системы с самосохраняемой структурой. Уровень клеток – первая ступень, на которой возможно разделение на живое и неживое.
2.2. Живые организмы с низкой способностью воспринимать информацию (растения).
2.3. Живые организмы с более развитой способностью воспринимать информацию, но не обладающие сознанием (животные).
2.4. Люди, характеризующиеся самосознанием, мышлением и нетривиальным поведением.
2.5. Социальные системы и социальные организации.
2.6. Трансцендентальные системы, или системы, лежащие в настоящий момент вне нашего познания.