Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физиология (2).docx
Скачиваний:
0
Добавлен:
12.12.2024
Размер:
2.05 Mб
Скачать
  1. Верхний и нижний концевые двигатели водного тока. Гуттация и плач растений. Передвижение воды по растению. Апопласт и симпласт. Теория сцепления. Когезия и адгезия.

Концевые двигатели восходящего тока — нижний (корневое давление) и верхний (присасывающее действие транспирации) взаимосвязаны, а также имеют связь с другими процессами жизнедеятельности, что обеспечивается сложной системой эндогенной регуляции. Путь, который проходит вода в растении, можно разделить на две физиологически различные части: по живым клеткам и по проводящей системе. Радиальный транспорт воды в корне включает три системы:

  • симпласт — совокупность протопластов всех клеток, соединенных плазмодесмами.

  • апопласт, т. е. взаимосвязанную систему клеточных стенок и межклетников.

  • дискретную систему вакуолей.

Все они в большей или меньшей степени связаны с преодолением мембран. Даже путь воды по апопласту прерывается в эндодерме, где вода вынуждена проходить через живое содержимое пропускных клеток, из-за гидрофобных отложений в радиальных клеточных стенках, образующих пояски Каспари. Эта необходимость переключения на симпластический путь имеет большое значение, так как процесс передвижения по живой протоплазме может регулироваться в отличие от передвижения по клеточным стенкам. Следует отметить, что мертвые клетки обладают гораздо большей проницаемостью для воды, чем живые. Для нормального водообмена растения клетки корня должны оставаться живыми, их высокое сопротивление водному току вполне оправданно. Высокое сопротивление мембран, обладающих избирательной проницаемостью, позволяет корню контролировать ток воды в растении. Большая часть водного пути приходится на долю проводящей системы растения, состоящей из сосудов и трахеид. Установлено также, что вода и растворенные вещества могут передвигаться в стебле и в поперечном направлении. Это происходит, например, при подрезке корней или обрезке ветвей, в таком случае растение в состоянии обеспечить водой и веществами те части организма, которые раньше обслуживались утраченными органами. Возможность радиального транспорта обусловлена самой структурой проводящей системы, а именно контактами сближающих трахеид через поры.

Теория сцепления. Движущей силой восходящего тока воды в проводящих элементах ксилемы являемся градиент водного потенциала через растение от почвы до атмосферы. Он поддерживается двумя основными компонентами: градиентом осмотического потенциала в клетках корня (от почвы до сосудов ксилемы), создаваемым активным транспортом ионов в живых клетках корня, включая молодые живые элементы ксилемы и транспирацией. Поддержание первого градиента требует затрат метаболической энергии; на транспирацию используется энергия солнечной радиации. Градиент осмотического потенциала обеспечивает поглощение воды корнем. Транспирация служит главной движущей силой восходящего тока воды. Согласно теории сцепления, вода в капиллярных трубках сосудов ксилемы поднимается вверх в ответ на присасывающее действие транспирации вследствие действия сил сцепления (когезии) молекул воды друг с другом и действия сил прилипания (адгезии) столба воды к гидрофильным стенкам сосудов. Обе силы препятствуют также образованию полостей у стенок сосудов, заполненных воздухом (или парами воды) и способных закупорить сосуд. При закупорке (эмболии) сосудов пузырьками воздуха всегда остается достаточное количество интактных нитей воды в других сосудах, чтобы обеспечить ток вверх. Кроме того, по-видимому, существуют механизмы восстановления непрерывности нарушенных эмболией водных нитей.

  1. Формы воды в почве. Доступная и недоступная вода. Влажность завядания.

Под доступной влагой понимают то количество воды, которое накапливается в почве от уровня влажности устойчивого завядания до полевой влагоемкости.

Полевая влагоемкость - характеризует максимальные размеры запаса почвенной влаги, который может быть использован для роста растений.

Влажность устойчивого завядания – показатель минимальных запасов почвенной влаги, это такая влажность почвы при которой растения остаются увядшими до тех пор пока в почву не подается вода.

Химически связанная вода входит в состав вторичных минералов и органических веществ почвы, она недоступна для растений. Сорбированная вода делится на прочносвязанную (гигроскопическую) и рыхлосвязанную (пленочную). Обе эти формы воды облегают почвенные частицы и удерживаются на их поверхности силами адсорбции. Гигроскопическая вода удерживается с силой 1000 МПа и более, поэтому она недоступна растениям. На поверхности тонких гигроскопических слоев образуется пленка из адсорбированных менее прочными силами молекул воды. Это дополнительно связанная сорбционными силами вода носит название пленочной.

Примерно половина объема почвы является свободным пространством, которое в период выпадения осадков или полива заполняется водой. Эта свободная вода делится на капиллярную и гравитационную. Капиллярная вода составляет ту часть доступной для растения влаги, которая находится в верхней части почвы и удерживается силами, сравнительно легко преодолеваемыми корнями. Гравитационная вода содержится в некапиллярных пространствах, заполняя поры после дождя и полива. Она передвигается под действием силы тяжести, легко стекает вниз, поэтому является недолговременной формой легко доступной для растений воды. Парообразная вода представлена в почве в форме водяного пара, передвигающегося по градиенту упругости или с током воздуха. Влажность завядания – степень увлажнения почвы при котором растения начинают завядать. Мертвый запас воды – количество воды которое почва прочно удерживает, а растения не могут использовать. Продуктивная (доступная) влага – вода которая содержится в почве сверх влажности завядания.

  1. Водный дефицит. Временное и глубокое завядание. Водный стресс. Влияние на растение недостатка воды.

При интенсивной транспирации или иссушении почвы, когда поступление воды в растения прекращается, происходит значительная потеря ее растительными клетками, которая не пополняется поглощением влаги из почвы, в результате чего создается водный дефицит, часто наблюдаемый у растений в наиболее жаркие часы. При водном дефиците листья теряют тургор, завядают, повисают. Водный дефицит (W) определяется по формуле: W=(1-m/m1)100, m-масса высечек до насыщения их водой, m1-масса после насыщения их водой.

Различают два типа завядания растений: временное и длительное. Первое наблюдается обычно в полуденные часы. При этом сильнее всего расходующие воду органы, а именно листья теряют тургор и вянут, остальные части растения сохраняют тургесцентность. При ослаблений транспирации к вечеру водный дефицит снижается, а в ночные часы за счет активной деятельности корневой системы водный баланс полностью восстанавливается. Длительное завядание наступает, когда в почве почти не остается доступной для растения влаги. В этих условиях водный баланс растения за ночь не восстанавливается. Такой не покрываемый к утру водный дефицит получил название остаточного дефицита.

Снижение содержания воды в клетке ниже оптимального уровня, вызывающее нарушения метаболизма, называется водным стрессом. Одним из показателей водного стресса является депрессия водного потенциала. Для типичной клетки листа мезофитов установлены три степени водного стресса: мягкий стресс — снижение водного потенциала не более чем на 1 МПа; умеренный (средний) стресс — снижение водного потенциала на 1,5 МПа; суровый стресс — снижение водного потенциала более чем на 1,5 МПа. Первые видимые признаки водного стресса – закрывание устьиц, завядание листьев и молодых стеблей и прекращение роста. Степень водного стресса часто оценивают количественно при помощи таких показателей, как дефицит насыщения, относительное содержание воды.

16. Особенности обмена веществ у засухоустойчивых растений. Ксероморфная структура. Правило В.Р. Заленского.

Здесь можно выделить три основных направления:

  1. регулирование потери воды за счет ксероморфного строения листьев;

  2. усиление поглощения воды из почвы благодаря увеличению мощности корневой системы и снижению водного потенциала корней;

  3. накопление воды и активизация ее транспорта.

ю

Большое значение для понимания природы засухоустойчивости имеют исследования Заленского. В 1904 г. им было установлено, что существует строгая ярусная изменчивость анатомического строения листа. Оказалось, что чем выше расположен лист на стебле, тем сильнее у него выражены признаки ксероморфности, повышающие засухоустойчивость, а именно:

  1. больше длина проводящей системы на единицу поверхности;

  2. меньше размеры клеток как верхнего, так и нижнего эпидермиса;

  3. меньше размеры устьиц на верхней и нижней сторонах листа;

  4. большее число устьиц на единицу листовой поверхности;

  5. толще наружные стенки у клеток верхнего и нижнего эпидермиса;

  6. сильнее развит восковой налет;

  7. меньше размеры всех клеток мезофилла;

  8. более типично развита палисадная паренхима;

  9. менее типично выражена губчатая паренхима;

  10. слабее представлена система межклетников;

  11. несколько сильнее развиты механические ткани

Заключая: Заключается в следующем: чем выше на стебле расположен лист, тем меньше размеры всех входящих в его состав клеток, больше число устьиц на единицу поверхности с меньшей величиной каждой в отдельности, гуще сеть проводящих пучков, сильнее развита палисадная ткань по сравнению с листьями, находящимися у основания побега

С анатомическими особенностями связаны также и физиологические: верхние листья отличаются более высокой интенсивностью процессов фотосинтеза и транспирации. Концентрация клеточного сока в клетках верхних листьев выше, и в условиях водного дефицита они оттягивают воду от более оводненных нижних листьев, которые при длительном завядании растения отмирают раньше. Одним из главных факторов, обусловливающих ксероморфизм строения листа, являются условия его водоснабжения на ранних фазах развития. Удаленность от корневой системы и оттягивание воды растущей верхушкой способствуют тому, что листья верхних ярусов формируются в условиях затрудненного водоснабжения, что приводит к их мелкоклеточности. Такое же ксероморфное строение может быть вызвано и непосредственным воздействием внешних факторов на растение: повышением сухости воздуха, понижением влажности почвы, а также периодическим завяданием. Растения, развивающиеся в таких условиях, отличаются повышенной засухоустойчивостью.