- •Клеточная оболочка, её структура и физиологические функции. Фазы роста клетки, этапы образования клеточной оболочки у растений.
- •Транспирация и её значение. Устьичная и кутикулярная транспирация. Методы устьичного контроля транспирации. Влияние внешних условий на движение устьиц. Типы движения устьиц.
- •Верхний и нижний концевые двигатели водного тока. Гуттация и плач растений. Передвижение воды по растению. Апопласт и симпласт. Теория сцепления. Когезия и адгезия.
- •Изменение засухоустойчивости растений в онтогенезе. Критические периоды (работы Сказкина).
- •Пути обезвреживания аммиака в растении.
- •Особенности потребления минеральных элементов в онтогенезе растений.
Транспирация и её значение. Устьичная и кутикулярная транспирация. Методы устьичного контроля транспирации. Влияние внешних условий на движение устьиц. Типы движения устьиц.
Транспирация – это процесс испарения воды растением. Интенсивная транспирация способствует большему притоку СО2, лучшему углеродному питанию растений. Транспирация создает автоматичность водного тока: поступление воды в растение и ее испаряемость. Без транспирации растение не будет обеспечено водой, поскольку корневое давление подает незначительное ее колво. Транспирация способствует передвижению минеральных веществ в растении, которые поглощаются из почвы корнями. Благодаря транспирации снижается температура растений. Без нее растения перегревались бы и в них не могли бы происходить различные физиологические и биохимические процессы. Одной из важных характеристик процесса является интенсивность транспирации — количество воды, испаряемое растением с единицы листовой поверхности в единицу времени.
Кутикулярная транспирация. Снаружи эпидермис покрыт кутикулой, в состав которой входит кутин. У кутикулы есть уникальное свойство, обусловленное особенностями ее состава — изменять водопроницаемость в зависимости от оводненности. При подсыхании наружных слоев стенок эпидермиса гидрофобные слои кутикулы плотнее придвигаются друг к другу, поэтому кутикулярное сопротивление может удвоиться. При низких температурах оно также возрастает. И, наоборот, при увеличении оводненности эпидермиса кутикула набухает за счет гидратации карбоксильных и оксигрупп, разрыхляется, кутикулярное сопротивление диффузии значительно снижается и транспирация возрастает. Таким образом, потеря воды через кутикулу регулируется оводненностью листа. По ночам, например, при более сильном набухании кутикулы кутикулярная фанспирация идет интенсивнее, чем днем. Смоченные листья могут поглощать воду через кутикулу. Кутикулярная транспирация обычно составляет около 10% от общей потери воды листом.
Устьица
составляют не более 1% всей площади
листа. На 1
листовой поверхности их насчитывают
от 50-500 и более. Каждое устьице можно
представить в виде очень маленького
сосудика. Поэтому несколько небольших
в какой-либо перегородке будут пропускать
пары воды быстрее, чем одно большое
отверстие, равное им по диаметру,
это связано с явлением повышенной
краевой диффузии.
Основной факт, обуславливающий движение
устьиц, является содержание воды в
листе. При достаточном ее кол-ве в
растении устьица открыты. На свету они
у большинства растений тоже открыты, а
в темноте закрыты. Движение устьиц
регулируется комплексом факторов
(температурой, осмотическим давлением,
интенсивность освещения и качества
света). Движение устьиц связано также
с изменением вязкости протоплазмы
замыкающих клеток.
1. Гидропассивная реакция — это закрывание устьичных щелей, вызванное тем, что окружающие паренхимные клетки переполнены водой и механически сдавливают замыкающие клетки. В результате сдавливания устьица не могут открыться и устьичная щель не образуется. Гидропассивные движения обычно наблюдаются после сильных поливов и могут служить причиной торможения процесса фотосинтеза.
2. Гидроактивная реакция открывания и закрывания — это движения, вызванные изменением в содержании воды в замыкающих клетках устьиц.
3. Фотоактивная реакция. Фотоактивные движения проявляются в открывании устьиц на свету и закрывании в темноте.
Методы учёта транспирации. Единицы измерения транспирации: интенсивность, экономичность, продуктивность транспирации, относительная транспирация. Транспирационный коэффициент.
Методы измерения интенсивности транспирации растений подразделяют на две группы:
Первую составляют методы, основанные на учёте массы исследуемого объекта через заданные промежутки времени или непрерывно (метод быстрого взвешивания отчлененного от растения листа или побега - первое взвешивание проводят сразу после срезания, а второе — через 3—5 мин, что дает возможность измерять транспирацию при том состоянии насыщенности листа водой, в каком он находился на растении.)
Методы второй группы основаны на учете величины потока водяного пара, поступающего из растения. В этом случае всю надземную часть растения или лист помещают в транспирационную камеру, через которую непрерывно прокачивают воздух. Пробы воздуха с входа и выхода камеры подаются в измерительное устройство, что позволяет регистрировать увеличение влажности воздуха в результате транспирации. Количество воды, испаряемой растением с единицы листовой поверхности в единицу времени, называют интенсивностью транспирации. Выражается в г/1м2 или 1см2 за 1час. Испаряемую воду можно отнести к массе листьев. Это также будет показателем интенсивности транспирации.
Продуктивность транспирации — количество граммов сухих веществ, образуемых при расходовании каждых 1000 г воды. Величиной, обратной продуктивности и транспирации, является транспирационный коэффициент, т. е. число граммов воды, израсходованной при накоплении 1 г сухих веществ. Интенсивность транспирации у большинства растений составляет 15-250 г*м2*ч днем и 1-20 г*м2*ч ночью. Продуктивность транспирации у растений в умеренном климате колеблется от 1 до 8 (в среднем 3 г) на 1000 г израсходованной воды, а транспирацинонный коэффициент — от 125 до 1000 (в среднем, около 300 т.е. около 300 г воды расходуется на накопление 1 г сухих веществ). Следовательно, на синтез веществ своего тела растение использует лишь 0.2% пропускаемой воды, остальные 99.8% тратятся на испарение.
Относительная транспирация – отношение воды, испаряемой листом, к воде, испаряемой со свободной водной поверхности той же площади за один и тот же промежуток времени.
Экономность транспирации - количество испаряемой воды (в мг) на единицу (1кг) воды, содержащейся в растениях. Тонколистные растения расходуют за час больше воды по сравнению с растениями с мясистыми листьями, которые испаряют 8-20% от общего количества содержащейся в них воды.
Особенности суточного хода движения устьиц у разных растении. Суточный ход процесса транспирации.
Английский исследователь Лофтфельд разделил все растения в отношении суточного хода устьичных движений на 3 группы:
Растения, у которых ночью устьица всегда закрыты, утром устьица открываются, и их дальнейшее поведение в течении дня зависит от условий среды. Мало воды-они закрываются, достаточно воды-открыты. К этой группе относят прежде всего хлебные злаки.
Растения, у которых ночное поведение устьиц зависит от дневного. Если днем устьица были закрыты, то ночью они откроются, если днем были открыты, то ночью закроются. К этой группе относят растения с тонкими листьями-люцерна, грох, клевер, свекла, подсолнечник.
Растения с более толстыми листьями, у которых ночью устьица всегда открыты, а днем, как и у всех остальных групп растений, открыты или закрыты в зависимости от условий (картофель, капуста).
Что касается суточного хода транспирации, то в ночной период суток транспирация резко сокращается. Это связано как с изменением внешних факторов (повышение влажности воздуха, снижение температуры, отсутствие света), так и с внутренними особенностями (закрытие устьиц). Измерения показывают, что ночная транспирация составляет всего 3-5% от дневной.
У деревьев, теневыносливых растений, многих злаков с совершенной регуляцией устьичной транспирации испарение воды достигает максимума до установления максимума дневной температуры. В полуденные часы транспирация падает и вновь может увеличиваться в предвечерние часы при снижении температуры воздуха. Такой ход транспирации приводит к незначительным суточным изменениям осмотического давления и содержания воды в листьях. У видов, способных переносить резкие изменения содержания воды в клетках в течение дня, наблюдается суточный ход транспирации с максимумом в полуденные часы. В обоих случаях ночью транспирация минимальна. Колебания интенсивности транспирации отражают изменения степени открытия устьиц в течение суток. Закрывание устьиц в полдень может быть связано как с увеличением уровня СО2 в листьях при повышении температуры воздуха (из-за усиления дыхания и фотодыхания, так и с возможным водным дефицитом, возникающим в тканях при высокой температуре, низкой влажности воздуха и особенно в ветреную погоду.) Снижение температуры воздуха во второй половине дня способствует открыванию устьиц и усилению фотосинтеза.
Основные закономерности поступления воды в растение. Возникновение градиента водного потенциала в растении. Градиент водного потенциала как движущая сила водного тока в растении. Понятие водного потенциала, и его составляющие.
Корневая система имеет поглощающую или всасывающую зону - это зона корневых волосков. Водообмен у растений складывается из трех этапов: 1) поглощения воды корнями, 2) передвижения ее по сосудам, 3) транспирации, т. е. испарения воды листьями
Возникновение градиента водного потенциала в растении связано с активным поглощением солей клетками эпиблемы, их передвижением в радиальном направлении по корню и поступлением в сосуды; важная роль в его поддержании принадлежит транспирации. Увеличение концентрации солей понижает водный потенциал в сосудах.
Градиент водного потенциала действует как движущая сила водного тока в растении так, что вода передвигается в сторону более низкого водного потенциала. Тем самым она поднимается вверх по всему растению.
Водный потенциал характеризует способность воды диффундировать, испаряться или поглощаться (и чем он выше, тем выше эта способность!).
Водный потенциал имеет размерность энергии, поделенной на объем (что совпадает с размерностью давления).
Его величину выражают в атмосферах или барах (1 атм = 1,013 бар = 105 Па)
