
БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ АВИАЦИИ
Факультет гражданской авиации
Кафедра естественнонаучных и общепрофессиональных дисциплин
ОТЧЕТ
по самостоятельной работе по теме
«Радиоактивные излучения и их применение»
по дисциплине физика
СОДЕРЖАНИЕ
1. Альфа-радиоактивность 3
2. Позитронная и электронная радиоактивность 6
3. Излучение нейтронов 10
4. Протонная радиоактивность 11
Выводы 13
Список использованной литературы 14
1. Альфа-радиоактивность
Альфа-распад - распад атомных ядер, сопровождающийся испусканием альфа-частиц(ядер 4He). Часть изотопов могут самопроизвольно испускать альфа-частицы (испытывать альфа-распад), т.е. являются альфа-радиоактивными. Альфа-радиоактивность за редким исключением (например 8Be) не встречается среди легких и средних ядер. Подавляющее большинство альфа-радиоактивных изотопов (более 200) расположены в периодической системе в в области тяжелых ядер (Z > 83). Известно также около 20 альфа-радиоактивных изотопов среди редкоземельных элементов, кроме того, альфа-радиоактивность характерна для ядер, находящихся вблизи границы протонной стабильности. Это обусловлено тем, что альфа-распад связан с кулоновским отталкиванием, которое возрастает по мере увеличения размеров ядер быстрее (как Z2 ), чем ядерные силы притяжения, которые растут линейно с ростом массового числа A. Ядро альфа-радиоактивно, если выполнено условие, являющееся следствием закона сохранения энергии
M(A,Z) >M(A-4,Z-2) + Mα, |
(1) |
где M(A,Z) и M(A-4,Z-2) - массы покоя исходного и конечного ядер соответственно, Mα - масса альфа-частицы. При этом в результате распада конечное ядро и альфа-частица приобретают суммарную кинетическую энергию
Qα = ( M(A,Z) - M(A-4,Z-2) - Mα ) с2, |
(2) |
которая называется энергией альфа-распада. Ядра могут испытывать альфа-распад также на возбужденные состояния конечных ядер и из возбужденных состояний начальных ядер. Поэтому соотношение для энергии альфа-распада (2) можно обобщить следующим образом
Qα =
( M(A,Z) - M(A-4,Z-2) - Mα )
с2 + |
(3) |
где и - энергии возбуждения начального и конечного ядер соответственно. Альфа-частицы, возникающие в результате распада возбужденных состояний, получили название длиннопробежных. Для большинства ядер с A > 190 и для многих ядер с 150 < A < 190 условие (12) выполняется, однако далеко не все они считаются альфа-радиоактивными. Дело в том, что современные экспериментальные возможности не позволяют обнаружить альфа-радиоактивность для нуклидов с периодом полураспада большим, чем 1016 лет. Кроме того, часть “потенциально” альфа-радиоактивных ядер испытывают также бета-распад, который сильно конкурирует с альфа-распадом. Основную часть энергии альфа-распада (около 98%) уносят альфа-частицы. Используя законы сохранения энергии и импульса для кинетической энергии альфа-частицы Tα можно получить соотношение
(4)
Периоды полураспада известных альфа-радиоактивных нуклидов варьируются от 0.298 мкс для 212Po до >1015 лет для 144Nd, 174Hf... Энергия альфа-частиц, испускаемых тяжелыми ядрами из основных состояний, составляет 4 - 9 МэВ, ядрами редкоземельных элементов 2 - 4.5 МэВ. Важным свойством альфа-распада является то, что при небольшом изменении энергии альфа-частиц периоды полураспада меняются на многие порядки. Так у 232Th Qα = 4.08 МэВ, T1/2 = 1.41·1010 лет, а у 218Th Qα = 9.85 МэВ, T1/2 = 10 мкс. Изменению энергии в 2 раза соответствует изменение в периоде полураспада на 24 порядка. Для четно-четных изотопов одного элемента зависимость периода полураспада от энергии альфа-распада хорошо описывается эмпирическим законом Гейгера - Неттола
lg T1/2 = A + B/(Qα)1/2, |
(5) |
где A и B - константы слабо зависящие от Z.