Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Радиоактивные излучения и их применение.docx
Скачиваний:
1
Добавлен:
07.12.2024
Размер:
33.03 Кб
Скачать

БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ АВИАЦИИ

Факультет гражданской авиации

Кафедра естественнонаучных и общепрофессиональных дисциплин

ОТЧЕТ

по самостоятельной работе по теме

«Радиоактивные излучения и их применение»

по дисциплине физика

СОДЕРЖАНИЕ

1. Альфа-радиоактивность 3

2. Позитронная и электронная радиоактивность 6

3. Излучение нейтронов 10

4. Протонная радиоактивность 11

Выводы 13

Список использованной литературы 14

1. Альфа-радиоактивность

    Альфа-распад - распад атомных ядер, сопровождающийся испусканием альфа-частиц(ядер 4He).     Часть изотопов могут самопроизвольно испускать альфа-частицы (испытывать альфа-распад), т.е. являются альфа-радиоактивными. Альфа-радиоактивность за редким исключением (например 8Be) не встречается среди легких и средних ядер. Подавляющее большинство альфа-радиоактивных изотопов (более 200) расположены в периодической системе в в области тяжелых ядер (Z > 83). Известно также около 20 альфа-радиоактивных изотопов среди редкоземельных элементов, кроме того, альфа-радиоактивность характерна для ядер, находящихся вблизи границы протонной стабильности. Это обусловлено тем, что альфа-распад связан с кулоновским отталкиванием, которое возрастает по мере увеличения размеров ядер быстрее (как Z2 ), чем ядерные силы притяжения, которые растут линейно с ростом массового числа A.     Ядро альфа-радиоактивно, если выполнено условие, являющееся следствием закона сохранения энергии

M(A,Z) >M(A-4,Z-2) + Mα,

(1)

где M(A,Z) и M(A-4,Z-2) - массы покоя исходного и конечного ядер соответственно, Mα - масса альфа-частицы. При этом в результате распада конечное ядро и альфа-частица приобретают суммарную кинетическую энергию

Qα = ( M(A,Z) - M(A-4,Z-2) - Mα ) с2,

(2)

которая называется энергией альфа-распада. Ядра могут испытывать альфа-распад также на возбужденные состояния конечных ядер и из возбужденных состояний начальных ядер. Поэтому соотношение для энергии альфа-распада (2) можно обобщить следующим образом

Qα = ( M(A,Z) - M(A-4,Z-2) - Mα ) с2 +   ,

(3)

где   и  - энергии возбуждения начального и конечного ядер соответственно. Альфа-частицы, возникающие в результате распада возбужденных состояний, получили название длиннопробежных. Для большинства ядер с A > 190 и для многих ядер с 150 < A < 190 условие (12) выполняется, однако далеко не все они считаются альфа-радиоактивными. Дело в том, что современные экспериментальные возможности не позволяют обнаружить альфа-радиоактивность для нуклидов с периодом полураспада большим, чем 1016 лет. Кроме того, часть “потенциально” альфа-радиоактивных ядер испытывают также бета-распад, который сильно конкурирует с альфа-распадом. Основную часть энергии альфа-распада (около 98%) уносят альфа-частицы. Используя законы сохранения энергии и импульса для кинетической энергии альфа-частицы Tα можно получить соотношение

(4)

   Периоды полураспада известных альфа-радиоактивных нуклидов варьируются от 0.298 мкс для 212Po до >1015 лет для 144Nd, 174Hf... Энергия альфа-частиц, испускаемых тяжелыми ядрами из основных состояний, составляет 4 - 9 МэВ, ядрами редкоземельных элементов 2 - 4.5 МэВ.     Важным свойством альфа-распада является то, что при небольшом изменении энергии альфа-частиц периоды полураспада меняются на многие порядки. Так у 232Th Qα = 4.08 МэВ, T1/2 = 1.41·1010 лет, а у 218Th Qα = 9.85 МэВ, T1/2 = 10 мкс. Изменению энергии в 2 раза соответствует изменение в периоде полураспада на 24 порядка.     Для четно-четных изотопов одного элемента зависимость периода полураспада от энергии альфа-распада хорошо описывается эмпирическим законом Гейгера - Неттола

lg T1/2 = A + B/(Qα)1/2,

(5)

где A и B - константы слабо зависящие от Z.